Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1972 Mar;109(3):1175–1180. doi: 10.1128/jb.109.3.1175-1180.1972

Acid-Soluble Nucleotides in an Asporogenous Mutant of Bacillus subtilis

C T Chow a,1, I Takahashi a
PMCID: PMC247341  PMID: 4622128

Abstract

An asporogenous mutant of Bacillus subtilis SpH12-3, which is considered to have a block at stage 0, showed general growth characteristics similar to those of sporulating cultures. However, a sudden increase in the total amount of acid-soluble nucleotides observed at t2 in sporulating bacteria was completely absent in this mutant. In sporulating cells, a marked increase in two nucleotides which were identified to be uridine diphosphate (UDP)-galactose and UDP-N-acetylglucosamine was noted, whereas UDP-glucose appeared to be accumulated in the mutant cells at t2. No unusual nucleotides were found in the strains of B. subtilis examined. The possible role of these UDP derivatives in early stages of sporulation in B. subtilis is discussed.

Full text

PDF
1175

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AMINOFF D., MORGAN W. T. J., WATKINS W. M. Studies in immunochemistry. 11. The action of dilute alkali on the N-acetylhexosamines and the specific blood-group mucoids. Biochem J. 1952 Jun;51(3):379–389. doi: 10.1042/bj0510379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BURTON K. A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem J. 1956 Feb;62(2):315–323. doi: 10.1042/bj0620315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. CABIB E., LELOIR L. F., CARDINI C. E. Uridine diphosphate acetylglucosamine. J Biol Chem. 1953 Aug;203(2):1055–1070. [PubMed] [Google Scholar]
  4. HURLBERT R. B., SCHMITZ H., BRUMM A. F., POTTER V. R. Nucleotide metabolism. II. Chromatographic separation of acid-soluble nucleotides. J Biol Chem. 1954 Jul;209(1):23–39. [PubMed] [Google Scholar]
  5. Hitchins A. D., Slepecky R. A. Bacterial sporulation as a modified procaryotic cell division. Nature. 1969 Aug 23;223(5208):804–807. doi: 10.1038/223804a0. [DOI] [PubMed] [Google Scholar]
  6. LEITZMANN C., BERNLOHR R. W. CHANGES IN THE NUCLEOTIDE POLL OF BACILLUS LICHENIFORMIS DURING SPORULATION. J Bacteriol. 1965 Jun;89:1506–1510. doi: 10.1128/jb.89.6.1506-1510.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. NAKATA H. M., HALVORSON H. O. Biochemical changes occurring during growth and sporulation of Bacillus cereus. J Bacteriol. 1960 Dec;80:801–810. doi: 10.1128/jb.80.6.801-810.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. SIMINOVITCH L., GRAHAM A. F. Synthesis of nucleic acids in Escherichia coli. Can J Microbiol. 1955 Dec;1(9):721–732. doi: 10.1139/m55-086. [DOI] [PubMed] [Google Scholar]
  9. SMITH E. E., MILLS G. T. Uridine nucleotide compounds of liver. Biochim Biophys Acta. 1954 Mar;13(3):386–400. doi: 10.1016/0006-3002(54)90346-7. [DOI] [PubMed] [Google Scholar]
  10. TAKAHASHI I. TRANSDUCTION OF SPOROGENESIS IN BACILLUS SUBTILIS. J Bacteriol. 1965 Feb;89:294–298. doi: 10.1128/jb.89.2.294-298.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Yamagishi H., Takahashi I. Genetic transcription in asporogenous mutants of Bacillus subtilis. Biochim Biophys Acta. 1968 Jan 29;155(1):150–158. doi: 10.1016/0005-2787(68)90345-6. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES