Abstract
The N2-fixing system of Clostridium pasteurianum operates under regulatory controls; no activity is found in cultures growing on excess NH3. The conditions which are necessary for the synthesis and function of this system were studied in whole cells by using acetylene reduction as a sensitive assay for the presence of the N2-fixing system. Nitrogenase of N2-fixing cultures normally can fix twice as much N2 as is needed to maintain the growth rate. When cultures that have grown for four or more generations on NH3 exhaust NH3 from the medium, a diauxic lag of about 90 min ensues before growth is resumed on N2. Neither N2-fixing nor acetylene reduction activity can be detected before growth is resumed on N2. N2 is not a necessary requirement for this synthesis since under argon that contains less than 10−8m N2, the N2-fixing system is made. If NH3 is added to N2-dependent cultures, synthesis of the enzyme system is abruptly stopped, but the enzyme already present remains stable and functional for at least 6 hr (over three generations). Cultures grown under argon in a chemostat controlled by limiting ammonia have derepressed nitrogenase synthesis. If the argon is removed and replaced by N2, partial repression of nitrogenase occurs.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- CARNAHAN J. E., MORTENSON L. E., MOWER H. F., CASTLE J. E. Nitrogen fixation in cell-free extracts of Clostridium pasteurianum. Biochim Biophys Acta. 1960 Nov 18;44:520–535. doi: 10.1016/0006-3002(60)91606-1. [DOI] [PubMed] [Google Scholar]
- Daesch G., Mortenson L. E. Sucrose catabolism in Clostridium pasteurianum and its relation to N2 fixation. J Bacteriol. 1968 Aug;96(2):346–351. doi: 10.1128/jb.96.2.346-351.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dilworth M. J. Acetylene reduction by nitrogen-fixing preparations from Clostridium pasteurianum. Biochim Biophys Acta. 1966 Oct 31;127(2):285–294. doi: 10.1016/0304-4165(66)90383-7. [DOI] [PubMed] [Google Scholar]
- Koch B., Evans H. J. Reduction of acetylene to ethylene by soybean root nodules. Plant Physiol. 1966 Dec;41(10):1748–1750. doi: 10.1104/pp.41.10.1748. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Koch B., Evans H. J., Russell S. Reduction of acetylene and nitrogen gas by breis and cell-free extracts of soybean root nodules. Plant Physiol. 1967 Mar;42(3):466–468. doi: 10.1104/pp.42.3.466. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MORTENSON L. E. FERREDOXIN AND ATP, REQUIREMENTS FOR NITROGEN FIXATION IN CELL-FREE EXTRACTS OF CLOSTRIDIUM PASTEURIANUM. Proc Natl Acad Sci U S A. 1964 Aug;52:272–279. doi: 10.1073/pnas.52.2.272. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mahl M. C., Wilson P. W. Nitrogen fixation by cell-free extracts of Klebsiella penumoniae. Can J Microbiol. 1968 Jan;14(1):33–38. doi: 10.1139/m68-006. [DOI] [PubMed] [Google Scholar]
- Mortenson L. E., Morris J. A., Jeng D. Y. Purification, metal composition and properties of molybdoferredoxin and azoferredoxin, two of the components of the nitrogen-fixing system of Clostridium pasteurianum. Biochim Biophys Acta. 1967 Aug 29;141(3):516–522. doi: 10.1016/0304-4165(67)90180-8. [DOI] [PubMed] [Google Scholar]
- Mustafa E., Mortenson L. E. Acetylene reduction by nitrogen fixing extracts of Clostridium pasteurianum: ATP requirement and inhibition by ADP. Nature. 1967 Dec 23;216(5121):1241–1242. doi: 10.1038/2161241a0. [DOI] [PubMed] [Google Scholar]
- PENGRA R. M., WILSON P. W. Physiology of nitrogen fixation by Aerobacter aerogenes. J Bacteriol. 1958 Jan;75(1):21–25. doi: 10.1128/jb.75.1.21-25.1958. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stewart W. D., Fitzgerald G. P., Burris R. H. In situ studies on N2 fixation using the acetylene reduction technique. Proc Natl Acad Sci U S A. 1967 Nov;58(5):2071–2078. doi: 10.1073/pnas.58.5.2071. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Strandberg G. W., Wilson P. W. Formation of the nitrogen-fixing enzyme system in Azotobacter vinelandii. Can J Microbiol. 1968 Jan;14(1):25–31. doi: 10.1139/m68-005. [DOI] [PubMed] [Google Scholar]
- Tonomura B., Rabinowitz J. C. An investigation of the induction of beta-galactosidase in a broken spheroplast preparation of Escherichia coli. J Mol Biol. 1967 Mar 14;24(2):177–202. doi: 10.1016/0022-2836(67)90325-7. [DOI] [PubMed] [Google Scholar]
- Yoch D. C., Pengra R. M. Effect of amino acids on the nitrogenase system of Klebsiella pneumoniae. J Bacteriol. 1966 Sep;92(3):618–622. doi: 10.1128/jb.92.3.618-622.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zelitch I. Simultaneous Use of Molecular Nitrogen and Ammonia by Clostridium Pasteurianum. Proc Natl Acad Sci U S A. 1951 Sep;37(9):559–565. doi: 10.1073/pnas.37.9.559. [DOI] [PMC free article] [PubMed] [Google Scholar]