Abstract
Indoleacrylic acid (5 × 10−4m in the growth medium) inhibits the growth of mycelia of Neurospora crassa and causes the cells to accumulate indoleglycerol phosphate. Measurement of kinetic parameters of partially purified tryptophan synthetase in the presence of indoleacrylic acid showed the following patterns of inhibition: in Reaction 1, the physiological reaction, indoleglycerol phosphate + serine [Formula: see text] tryptophan + glyceraldehyde-3-phosphate (unusual with respect to indoleglycerol phosphate, partially competitive with respect to serine); in Reaction 2, indole + serine [Formula: see text] tryptophan (unusual with respect to indole, partially competitive with respect to serine); in Reaction 3, indoleglycerol phosphate [Formula: see text] indole + glyceraldehyde-3-phosphate (no inhibition observed). The effects of indoleacrylic acid on whole cells were completely reversed by equimolar concentrations of tryptophan but not by indole. The addition of a 10-fold molar excess of serine to the medium completely reversed the effects. The accumulation of indoleglycerol phosphate appears to be the result of the partial blockage of tryptophan synthetase, the resulting deprivation of tryptophan, and the consequent release of its physiological feedback control on anthranilate synthetase.
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BURNS R. O., DEMOSS R. D. Properties of tryptophanase from Escherichia coli. Biochim Biophys Acta. 1962 Dec 4;65:233–244. doi: 10.1016/0006-3002(62)91042-9. [DOI] [PubMed] [Google Scholar]
- CRAWFORD I. P., ITO J. SERINE DEAMINATION BY THE B PROTEIN OF ESCHERICHIA COLI TRYPTOPHAN SYNTHETASE. Proc Natl Acad Sci U S A. 1964 Mar;51:390–397. doi: 10.1073/pnas.51.3.390. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DEMOSS J. A. Studies on the mechanism of the tryptophan synthetase reaction. Biochim Biophys Acta. 1962 Aug 13;62:279–293. doi: 10.1016/0006-3002(62)90041-0. [DOI] [PubMed] [Google Scholar]
- DEMOSS J. A. THE CONVERSION OF SHIKIMIC ACID TO ANTHRANILIC ACID BY EXTRACTS OF NEUROSPORA CRASSA. J Biol Chem. 1965 Mar;240:1231–1235. [PubMed] [Google Scholar]
- Doolittle W. F., Yanofsky C. Mutants of Escherichia coli with an altered tryptophanyl-transfer ribonucleic acid synthetase. J Bacteriol. 1968 Apr;95(4):1283–1294. doi: 10.1128/jb.95.4.1283-1294.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Faeder E. J., Hammes G. G. Kinetic studies of tryptophan synthetase. Interaction of L-serine, indole, and tryptophan with the native enzyme. Biochemistry. 1971 Mar 16;10(6):1041–1045. doi: 10.1021/bi00782a016. [DOI] [PubMed] [Google Scholar]
- GARRICK M. D., ELBERFELD H., SUSKIND S. R. TRYPTOPHAN SYNTHETASE FROM NEUROSPORA: A MODIFICATION IN THE REACTION SCHEME. Science. 1964 Jul 31;145(3631):491–492. doi: 10.1126/science.145.3631.491. [DOI] [PubMed] [Google Scholar]
- Goldberg M. E., Baldwin R. L. Interactions between the subunits of the tryptophan synthetase of Escherichia coli. Optical properties of an intermediate bound to the alpha-2 beta-2 complex. Biochemistry. 1967 Jul;6(7):2113–2119. doi: 10.1021/bi00859a032. [DOI] [PubMed] [Google Scholar]
- Kumagai H., Miles E. W. The B protein of Escherichia coli tryptophan synthetase. II. New -elimination and -replacement reactions. Biochem Biophys Res Commun. 1971 Sep;44(5):1271–1278. doi: 10.1016/s0006-291x(71)80223-1. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lester G. Regulation of tryptophan biosynthetic enzymes in Neurospora crassa. J Bacteriol. 1971 Jul;107(1):193–202. doi: 10.1128/jb.107.1.193-202.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MATCHETT W. H., DEMOSS J. A. Direct evidence for a trytophan-anthranilic acid cycle in Neurospora. Biochim Biophys Acta. 1963 Jun 4;71:632–642. doi: 10.1016/0006-3002(63)91136-3. [DOI] [PubMed] [Google Scholar]
- MATCHETT W. H., DEMOSS J. A. PHYSIOLOGICAL CHANNELING OF TRYPTOPHAN IN NEUROSPORA CRASSA. Biochim Biophys Acta. 1964 Apr 4;86:91–99. doi: 10.1016/0304-4165(64)90162-x. [DOI] [PubMed] [Google Scholar]
- METZLER D. E., SNELL E. E. Deamination of serine. II. D-Serine dehydrase, a vitamin B6 enzyme from Escherichia coli. J Biol Chem. 1952 Sep;198(1):363–373. [PubMed] [Google Scholar]
- Matchett W. H. The utilization of tryptophan by neurospora. Biochim Biophys Acta. 1965 Sep 13;107(2):222–231. doi: 10.1016/0304-4165(65)90129-7. [DOI] [PubMed] [Google Scholar]
- Matchett W. H., Turner J. R., Wiley W. R. The role of tryptophan in the physiology of Neurospora. Yale J Biol Med. 1968 Feb;40(4):257–283. [PMC free article] [PubMed] [Google Scholar]
- Morino Y., Snell E. E. A kinetic study of the reaction mechanism of tryptophanase-catalyzed reactions. J Biol Chem. 1967 Jun 25;242(12):2793–2799. [PubMed] [Google Scholar]
- Morino Y., Snell E. E. The relation of spectral changes and tritium exchange reactions to the mechanism of tryptophanase-catalyzed reactions. J Biol Chem. 1967 Jun 25;242(12):2800–2809. [PubMed] [Google Scholar]
- Turner J. R., Matchett W. H. Alteration of tryptophan-mediated regulation in Neurospora crassa by indoleglycerol phosphate. J Bacteriol. 1968 May;95(5):1608–1614. doi: 10.1128/jb.95.5.1608-1614.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- YANOFSKY C. The tryptophan synthetase system. Bacteriol Rev. 1960 Jun;24(2):221–245. doi: 10.1128/br.24.2.221-245.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
