Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1972 Apr;110(1):246–255. doi: 10.1128/jb.110.1.246-255.1972

Purification and Characterization of Acid Phosphatase V from Aspergillus nidulans

Zsolt Harsanyi 1,2,1, Gordon L Dorn 1,2
PMCID: PMC247404  PMID: 4552990

Abstract

Acid phosphatase V of Aspergillus nidulans was purified by ammonium sulfate precipitation, gel filtration, and ion-exchange chromatography. The enzyme demonstrated a charge microheterogeneity on starch and acrylamide gel electrophoresis, but proved to be homogeneous on ultracentrifugation and gel filtration. Phosphatase V was found to be a classic acid orthophosphoric monoester phosphohydrolase, and it cleaved p-nitrophenylphosphate, glucose-6-phosphate, and uridine-5′-monophosphate at maximal rates. It was inhibited by fluoride, borate, and molybdate ions, and demonstrated end-product inhibition by inorganic phosphate. Metallic ions or cofactors were not required for activity. The molecular weight was estimated to be 100,000, the S20,w was calculated to be 4.1, and the pH optimum was found to be 6.1.

Full text

PDF
246

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen S. L. Genetic and epigenetic control of several isozymic systems in Tetrahymena. Ann N Y Acad Sci. 1968 Jun 14;151(1):190–207. doi: 10.1111/j.1749-6632.1968.tb11889.x. [DOI] [PubMed] [Google Scholar]
  2. Andrews P. Estimation of the molecular weights of proteins by Sephadex gel-filtration. Biochem J. 1964 May;91(2):222–233. doi: 10.1042/bj0910222. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brew K., Vanaman T. C., Hill R. L. The role of alpha-lactalbumin and the A protein in lactose synthetase: a unique mechanism for the control of a biological reaction. Proc Natl Acad Sci U S A. 1968 Feb;59(2):491–497. doi: 10.1073/pnas.59.2.491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Butterworth P. J., Moss D. W. Action of neuraminidase on human kidney alkaline phosphatase. Nature. 1966 Feb 19;209(5025):805–806. doi: 10.1038/209805a0. [DOI] [PubMed] [Google Scholar]
  5. Cunningham L., Ford J. D., Rainey J. M. Heterogeneity of beta-aspartyl-oligosaccharides derived from ovalbumin. Biochim Biophys Acta. 1965 Jul 1;101(2):233–235. [PubMed] [Google Scholar]
  6. DORN G. GENETIC ANALYSIS OF THE PHOSPHATASES IN ASPERGILLUS NIDULANS. Genet Res. 1965 Feb;6:13–26. doi: 10.1017/s0016672300003943. [DOI] [PubMed] [Google Scholar]
  7. DRYER R. L., TAMMES A. R., ROUTH J. I. The determination of phosphorus and phosphatase with N-phenyl-p-phenylenediamine. J Biol Chem. 1957 Mar;225(1):177–183. [PubMed] [Google Scholar]
  8. DiPietro D. L., Zengerle F. S. Separation and properties of three acid phosphatases from human placenta. J Biol Chem. 1967 Jul 25;242(14):3391–3395. [PubMed] [Google Scholar]
  9. Dorn G. L. Purification and characterization of phosphatase I from Aspergillus nidulans. J Biol Chem. 1968 Jun 25;243(12):3500–3506. [PubMed] [Google Scholar]
  10. Dorn G. L. Purification of two alkaline phosphatases from Aspergillus nidulans. Biochim Biophys Acta. 1967 Jan 11;132(1):190–193. doi: 10.1016/0005-2744(67)90208-2. [DOI] [PubMed] [Google Scholar]
  11. Esser K., Minuth W. The phenoloxidases of the ascomycete Podospora anserina. Communication 4. Genetic regulation of the formation of laccase. Genetics. 1970 Mar-Apr;64(3):441–458. [PMC free article] [PubMed] [Google Scholar]
  12. Fishbein W. N., Spears C. L., Scurzi W. Spectrum of urease isozymes: genetic, polymeric and conformeric. Nature. 1969 Jul 12;223(5202):191–193. doi: 10.1038/223191a0. [DOI] [PubMed] [Google Scholar]
  13. GAREN A., LEVINTHAL C. A fine-structure genetic and chemical study of the enzyme alkaline phosphatase of E. coli. I. Purification and characterization of alkaline phosphatase. Biochim Biophys Acta. 1960 Mar 11;38:470–483. doi: 10.1016/0006-3002(60)91282-8. [DOI] [PubMed] [Google Scholar]
  14. Hanson T. E., Anderson R. L. Phosphoenolpyruvate-dependent formation of D-fructose 1-phosphate by a four-component phosphotransferase system. Proc Natl Acad Sci U S A. 1968 Sep;61(1):269–276. doi: 10.1073/pnas.61.1.269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Heinrikson R. L. Purification and characterization of a low molecular weight acid phosphatase from bovine liver. J Biol Chem. 1969 Jan 25;244(2):299–307. [PubMed] [Google Scholar]
  16. KILSHEIMER G. S., AXELROD B. Inhibition of prostatic acid phosphatase by alpha-hydroxycarboxylic acids. J Biol Chem. 1957 Aug;227(2):879–890. [PubMed] [Google Scholar]
  17. KILSHEIMER G. S., AXELROD B. Phylogenetic distribution of acid phosphatase inhibited by (+)-tartrate. Nature. 1958 Dec 20;182(4651):1733–1734. doi: 10.1038/1821733a0. [DOI] [PubMed] [Google Scholar]
  18. KUO M. H., BLUMENTHAL H. J. An alkaline phosphomonoesterase from Neurospora crassa. Biochim Biophys Acta. 1961 Nov 25;54:101–109. doi: 10.1016/0006-3002(61)90942-8. [DOI] [PubMed] [Google Scholar]
  19. LEWIS U. J. Enzymatic transformations of growth hormone and prolactin. J Biol Chem. 1962 Oct;237:3141–3145. [PubMed] [Google Scholar]
  20. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  21. MITCHELL H. K., WEBER U. M. DROSOPHILA PHENOL OXIDASES. Science. 1965 May 14;148(3672):964–965. doi: 10.1126/science.148.3672.964. [DOI] [PubMed] [Google Scholar]
  22. McKelvy J. F., Lee Y. C. Microheterogeneity of the carbohydrate group of aspergillus oryzae alpha-amylase. Arch Biochem Biophys. 1969 Jun;132(1):99–110. doi: 10.1016/0003-9861(69)90341-5. [DOI] [PubMed] [Google Scholar]
  23. Nyc J. F. A repressible acid phosphatase in Neurospora crassa. Biochem Biophys Res Commun. 1967 Apr 20;27(2):183–188. doi: 10.1016/s0006-291x(67)80059-7. [DOI] [PubMed] [Google Scholar]
  24. PATEMAN J. A., COVE D. J., REVER B. M., ROBERTS D. B. A COMMON CO-FACTOR FOR NITRATE REDUCTASE AND XANTHINE DEHYDROGENASE WHICH ALSO REGULATES THE SYNTHESIS OF NITRATE REDUCTASE. Nature. 1964 Jan 4;201:58–60. doi: 10.1038/201058a0. [DOI] [PubMed] [Google Scholar]
  25. POULIK M. D. Starch gel electrophoresis in a discontinous system of buffers. Nature. 1957 Dec 28;180(4600):1477–1479. doi: 10.1038/1801477a0. [DOI] [PubMed] [Google Scholar]
  26. Plummer T. H., Jr Glycoproteins of bovine pancreatic juice. Isolation of ribonucleases C and D. J Biol Chem. 1968 Nov 25;243(22):5961–5966. [PubMed] [Google Scholar]
  27. ROGERS D., REITHEL F. J. Acid phosphatases of Escherichia coli. Arch Biochem Biophys. 1960 Jul;89:97–104. doi: 10.1016/0003-9861(60)90018-7. [DOI] [PubMed] [Google Scholar]
  28. SMITHIES O. Zone electrophoresis in starch gels: group variations in the serum proteins of normal human adults. Biochem J. 1955 Dec;61(4):629–641. doi: 10.1042/bj0610629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Schaefler S., Schenkein I. Regulatory effects of substrates on a phosphotransferase from Aerobacter aerogenes and modification of its activity by partial proteolysis. Proc Natl Acad Sci U S A. 1969 Apr;62(4):1210–1217. doi: 10.1073/pnas.62.4.1210. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Schultz J., Felberg N., John S. Myeloperoxidase 8. Separation into ten components by free-flow electrophoresis. Biochem Biophys Res Commun. 1967 Aug 23;28(4):543–549. doi: 10.1016/0006-291x(67)90348-8. [DOI] [PubMed] [Google Scholar]
  31. TORRIANI A. Influence of inorganic phosphate in the formation of phosphatases by Escherichia coli. Biochim Biophys Acta. 1960 Mar 11;38:460–469. doi: 10.1016/0006-3002(60)91281-6. [DOI] [PubMed] [Google Scholar]
  32. Vesell E. S., Yielding K. L. Protection of lactate dehydrogenase isozymes from heat inactivation and enzymatic degradation. Ann N Y Acad Sci. 1968 Jun 14;151(1):678–689. doi: 10.1111/j.1749-6632.1968.tb11928.x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES