Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1972 May;110(2):504–510. doi: 10.1128/jb.110.2.504-510.1972

Effects of Chloramphenicol Isomers and Erythromycin on Enzyme and Lipid Synthesis Induced by Oxygen in Wild-Type and Petite Yeast

P A Gordon a,1, M J Lowdon a,2, P R Stewart a
PMCID: PMC247441  PMID: 4336687

Abstract

The synthesis of mitochondrial enzymes induced by exposure of anaerobically grown, lipid-depleted Saccharomyces cerevisiae to oxygen is inhibited by d(−)-threo-chloramphenicol and erythromycin. The concentration of these antibiotics required to cause 50% inhibition of this synthesis is less than 1 mm; this is also approximately the concentration required to inhibit by the same amount mitochondrial protein synthesis in situ. The synthesis of unsaturated fatty acids, ergosterol, and phospholipid induced by aeration is inhibited by d(−)-threo-chloramphenicol at high concentrations (12 mm) but is unaffected by erythromycin. l(+)-threo-Chloramphenicol affects neither enzyme nor lipid synthesis and is without effect on mitochondrial protein synthesis in situ. All three compounds inhibit the oxidative activity of isolated mitochondria; the chloramphenicol isomers also inhibit phosphorylation. In a euflavine-derived petite mutant, lacking mitochondrial protein synthesis and respiration, aeration results in the normal development of lipid in the cells, but no synthesis of mitochondrial enzymes. d(−)-threo-Chloramphenicol does not inhibit lipid synthesis in these cells. Thus inhibition of mitochondrial protein synthesis with erythromycin or genetic deletion of mitochondrial protein synthesis results in loss of the capacity to synthesize enzymes during aeration. d(−)-threo-Chloramphenicol, as well as inhibiting induced enzyme formation, inhibits lipid synthesis induced by oxygen. It is unlikely that the latter effect of chloramphenicol is due to inhibition of energy production and transformation, to direct effects on lipid synthesis, or to an inhibition of mitochondrial protein synthesis. It is, however, an effect not shared with the l isomer.

Full text

PDF
504

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams B. G., Parks L. W. Differential effect of respiratory inhibitors on ergosterol synthesis by Saccharomyces cerevisiae during adaptation to oxygen. J Bacteriol. 1969 Oct;100(1):370–376. doi: 10.1128/jb.100.1.370-376.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BAUCHOP T., ELSDEN S. R. The growth of micro-organisms in relation to their energy supply. J Gen Microbiol. 1960 Dec;23:457–469. doi: 10.1099/00221287-23-3-457. [DOI] [PubMed] [Google Scholar]
  3. Beattie D. S. Studies on the biogenesis of mitochondrial protein components in rat liver slices. J Biol Chem. 1968 Aug 10;243(15):4027–4033. [PubMed] [Google Scholar]
  4. CHANCE B., WILLIAMS G. R. A simple and rapid assay of oxidative phosphorylation. Nature. 1955 Jun 25;175(4469):1120–1121. doi: 10.1038/1751120a0. [DOI] [PubMed] [Google Scholar]
  5. Dixon H., Kellerman G. M., Mitchell C. H., Towers N. H., Linnane A. W. Mikamycin, an inhibitor of both mitochondrial protein synthesis and respiration. Biochem Biophys Res Commun. 1971 May 21;43(4):780–786. doi: 10.1016/0006-291x(71)90684-x. [DOI] [PubMed] [Google Scholar]
  6. Firkin F. C., Linnane A. W. Differential effects of chloramphenicol on the growth and respiration of mammalian cells. Biochem Biophys Res Commun. 1968 Aug 13;32(3):398–402. doi: 10.1016/0006-291x(68)90674-8. [DOI] [PubMed] [Google Scholar]
  7. Freeman K. B. Effects of chloramphenicol and its isomers and analogues on the mitochondrial respiratory chain. Can J Biochem. 1970 Apr;48(4):469–478. doi: 10.1139/o70-076. [DOI] [PubMed] [Google Scholar]
  8. Freeman K. B., Haldar D. The inhibition of NADH oxidation in mammalian mitochondria by chloramphenicol. Biochem Biophys Res Commun. 1967 Jul 10;28(1):8–12. doi: 10.1016/0006-291x(67)90397-x. [DOI] [PubMed] [Google Scholar]
  9. Freeman K. B., Haldar D. The inhibition of mammalian mitochondrial NADH oxidation by chloramphenicol and its isomers and analogues. Can J Biochem. 1968 Sep;46(9):1003–1008. doi: 10.1139/o68-151. [DOI] [PubMed] [Google Scholar]
  10. Freeman K. B. Inhibition of mitochondrial and bacterial protein synthesis by chloramphenicol. Can J Biochem. 1970 Apr;48(4):479–485. doi: 10.1139/o70-077. [DOI] [PubMed] [Google Scholar]
  11. Gordon P. A., Syewart P. R. The effect of antibiotics on lipid synthesis during respiratory development in Saccharomyces cerevisiae. Microbios. 1971 Sep;4(14):115–132. [PubMed] [Google Scholar]
  12. HANSON J. B., HODGES T. K. UNCOUPLING ACTION OF CHLORAMPHENICOL AS A BASIS FOR THE INHIBITION OF ION ACCUMULATION. Nature. 1963 Dec 7;200:1009–1009. doi: 10.1038/2001009a0. [DOI] [PubMed] [Google Scholar]
  13. Jollow D., Kellerman G. M., Linnane A. W. The biogenesis of mitochondria. 3. The lipid composition of aerobically and anaerobically grown Saccharomyces cerevisiae as related to the membrane systems of the cells. J Cell Biol. 1968 May;37(2):221–230. doi: 10.1083/jcb.37.2.221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. KLEIN H. P. Synthesis of lipids in resting cells of Saccharomyces cerevisiae. J Bacteriol. 1955 Jun;69(6):620–627. doi: 10.1128/jb.69.6.620-627.1955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kormancíkov'A V., Kovác L., Vidová M. Oxidative phosphorylation in yeast. V. Phosphorylation efficiencies in growing cells determined from molar growth yields. Biochim Biophys Acta. 1969 May;180(1):9–17. doi: 10.1016/0005-2728(69)90188-1. [DOI] [PubMed] [Google Scholar]
  16. Kovác L., Subík J., Russ G., Kollár K. On the relationship between respiratory activity and lipid composition of the yeast cell. Biochim Biophys Acta. 1967 Aug 8;144(1):94–101. doi: 10.1016/0005-2760(67)90080-x. [DOI] [PubMed] [Google Scholar]
  17. Kuzela S., Grecná E. Lack of amino acid incorporation by isolated mitochondria from respiratory-deficient cytoplasmic yeast mutants. Experientia. 1969;25(7):776–777. doi: 10.1007/BF01897625. [DOI] [PubMed] [Google Scholar]
  18. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  19. Plattner H., Salpeter M. M., Saltzgaber J., Schatz G. Promitochondria of anaerobically grown yeast. IV. Conversion into respiring mitochondria. Proc Natl Acad Sci U S A. 1970 Aug;66(4):1252–1259. doi: 10.1073/pnas.66.4.1252. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Schatz G., Saltzgaber J. Protein synthesis by yeast promitochondria in vivo. Biochem Biophys Res Commun. 1969 Dec 4;37(6):996–1001. doi: 10.1016/0006-291x(69)90230-7. [DOI] [PubMed] [Google Scholar]
  21. Schweyen R., Kaudewitz F. Protein synthesis by yeast mitochondria in vivo. Quantitative estimate of mitochondrially governed synthesis of mitochondrial proteins. Biochem Biophys Res Commun. 1970 Feb 20;38(4):728–735. doi: 10.1016/0006-291x(70)90642-x. [DOI] [PubMed] [Google Scholar]
  22. Vary M. J., Edwards C. L., Stewart P. R. The biogenesis of mitochondria. IX. Formation of the soluble mitochondrial enzymes malate dehydrogenase and fumarase in Saccharomyces cerevisiae. Arch Biochem Biophys. 1969 Mar;130(1):235–243. doi: 10.1016/0003-9861(69)90029-0. [DOI] [PubMed] [Google Scholar]
  23. Vary M. J., Stewart P. R., Linnane A. W. Biogenesis of mitochondria. XVII. The role of mitochondrial and cytoplasmic ribosomal protein synthesis in the oxygen-induced formation of yeast mitochondrial enzymes. Arch Biochem Biophys. 1970 Dec;141(2):430–439. doi: 10.1016/0003-9861(70)90159-1. [DOI] [PubMed] [Google Scholar]
  24. Weisblum B., Davies J. Antibiotic inhibitors of the bacterial ribosome. Bacteriol Rev. 1968 Dec;32(4 Pt 2):493–528. [PMC free article] [PubMed] [Google Scholar]
  25. Wintersberger E. A distinct class of ribosomal RNA components in yeast mitochondria as revealed by gradient centrifugation and by DNA-RNA-hybridization. Hoppe Seylers Z Physiol Chem. 1967 Dec;348(12):1701–1704. [PubMed] [Google Scholar]
  26. Yu R., Poulson R., Stewart P. R. Comparative studies on mitochondrial development in yeasts. I. Mitochondrial ribosomes from Candida parapsilosis. Mol Gen Genet. 1972;114(4):325–338. doi: 10.1007/BF00267501. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES