Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1972 May;110(2):511–515. doi: 10.1128/jb.110.2.511-515.1972

Effect of Unsaturated Fatty Acids on the Development of Respiration and on Protein Synthesis in an Unsaturated Fatty Acid Mutant of Saccharomyces cerevisiae

P A Gordon a,1, M J Lowdon a,2, P R Stewart a
PMCID: PMC247442  PMID: 4336688

Abstract

The extent of development of respiratory function induced by aeration of an anaerobically grown unsaturated fatty acid auxotroph of Saccharomyces cerevisiae is determined by the availability, endogenous or externally supplied, of unsaturated fatty acid. The synthesis of mitochondrial and cytoplasmic enzymes during aeration appears to have a similar basis of regulation by available unsaturated fatty acid. Levels of unsaturated fatty acid that permit the synthesis of mitochondrial enzymes also result in a substantial stimulation of cellular protein synthesis.

Full text

PDF
511

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ANDREASEN A. A., STIER T. J. Anaerobic nutrition of Saccharomyces cerevisiae. II. Unsaturated fatty acid requirement for growth in a defined medium. J Cell Physiol. 1954 Jun;43(3):271–281. doi: 10.1002/jcp.1030430303. [DOI] [PubMed] [Google Scholar]
  2. Forrester I. T., Watson K., Linnane A. W. Mitochondrial membrane organisation, a determinant of mitochondrial ribosomal RNA synthesis. Biochem Biophys Res Commun. 1971 Apr 16;43(2):409–415. doi: 10.1016/0006-291x(71)90768-6. [DOI] [PubMed] [Google Scholar]
  3. Gordon P. A., Lowdon M. J., Stewart P. R. Effects of chloramphenicol isomers and erythromycin on enzyme and lipid synthesis induced by oxygen in wild-type and petite yeast. J Bacteriol. 1972 May;110(2):504–510. doi: 10.1128/jb.110.2.504-510.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Gordon P. A., Syewart P. R. The effect of antibiotics on lipid synthesis during respiratory development in Saccharomyces cerevisiae. Microbios. 1971 Sep;4(14):115–132. [PubMed] [Google Scholar]
  5. Keith A. D., Resnick M. R., Haley A. B. Fatty acid desaturase mutants of Saccharomyces cerevisiae. J Bacteriol. 1969 May;98(2):415–420. doi: 10.1128/jb.98.2.415-420.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Proudlock J. W., Haslam J. M., Linnane A. W. Specific effect of unsaturated fatty acid depletion on mitochondrial oxidative phosphorylation in Saccharomyces cerevisiae. Biochem Biophys Res Commun. 1969 Nov 20;37(5):847–852. doi: 10.1016/0006-291x(69)90969-3. [DOI] [PubMed] [Google Scholar]
  7. Takagi M., Tanaka T., Ogata K. Functional differences in protein synthesis between free and bound polysomes of rat liver. Biochim Biophys Acta. 1970 Sep 17;217(1):148–158. doi: 10.1016/0005-2787(70)90131-0. [DOI] [PubMed] [Google Scholar]
  8. Wallace P. G., Huang M., Linnane A. W. The biogenesis of mitochondria. II. The influence of medium composition on the cytology of anaerobically grown Saccharomyces cerevisiae. J Cell Biol. 1968 May;37(2):207–220. doi: 10.1083/jcb.37.2.207. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES