Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1972 May;110(2):538–546. doi: 10.1128/jb.110.2.538-546.1972

Regulation of Nitrate Reductase in Neurospora crassa: Stability In Vivo

K N Subramanian a,1, G J Sorger a
PMCID: PMC247446  PMID: 4401813

Abstract

Nicotinamide adenine dinucleotide phosphate, reduced form (NADPH)-nitrate reductase and its related enzyme activities, NADPH-cytochrome c reductase and reduced benzyl viologen-nitrate reductase, are all induced following the transfer of ammonia-grown wild-type Neurospora mycelia to nitrate medium. After nitrate reductase is induced to the maximal level, the addition of an ammonium salt to, or the removal of nitrate from, the cultures results in a rapid inactivation of nitrate reductase and its two partial component activities. This rapid inactivation is slowed down by the protein synthesis inhibitor, cycloheximide. Experiments on the mixing of extracts in vitro rule out the presence of an inhibitor of nitrate reductase in free form in extracts containing inactivated nitrate reductase. Ammonia does not inhibit the uptake of nitrate by the mycelia. Inactivation of nitrate reductase in vivo by ammonia depends on the concentration of the ammonium salt and is not reversed by increasing the nitrate concentration of the medium. The nitrate-inducible NADPH-cytochrome c reductase activity and reduced benzyl viologen-nitrate reductase activity respectively of the nitrate-nonutilizing mutants nit-1 and nit-3 are not inactivated in vivo by the addition of an ammonium salt or the withdrawal of nitrate. This finding suggests that the integrity of the nitrate reductase complex is required for the in vivo inactivation of nitrate reductase and its associated activities.

Full text

PDF
538

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beevers L., Schrader L. E., Flesher D., Hageman R. H. The Role of Light and Nitrate in the Induction of Nitrate Reductase in Radish Cotyledons and Maize Seedlings. Plant Physiol. 1965 Jul;40(4):691–698. doi: 10.1104/pp.40.4.691. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cove D. J. The induction and repression of nitrate reductase in the fungus Aspergillus nidulans. Biochim Biophys Acta. 1966 Jan 11;113(1):51–56. doi: 10.1016/s0926-6593(66)80120-0. [DOI] [PubMed] [Google Scholar]
  3. Engelsma G. Effect of cycloheximide on the inactivation of phenylalanine deaminase in gherkin seedlings. Naturwissenschaften. 1967 Jun;54(12):319–320. doi: 10.1007/BF00640619. [DOI] [PubMed] [Google Scholar]
  4. Ferguson J. J., Jr, Boll M., Holzer H. Yeast malate dehydrogenase: enzyme inactivation in catabolite repression. Eur J Biochem. 1967 Mar;1(1):21–25. doi: 10.1007/978-3-662-25813-2_4. [DOI] [PubMed] [Google Scholar]
  5. Filner P. Regulation of nitrate reductase in cultured tobacco cells. Biochim Biophys Acta. 1966 May 5;118(2):299–310. doi: 10.1016/s0926-6593(66)80038-3. [DOI] [PubMed] [Google Scholar]
  6. Flavell R. B., Woodward D. O. Metabolic role, regulation of synthesis, cellular localization, and genetic control of the glyoxylate cycle enzymes in Neurospora crassa. J Bacteriol. 1971 Jan;105(1):200–210. doi: 10.1128/jb.105.1.200-210.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Garrett R. H., Nason A. Further purification and properties of Neurospora nitrate reductase. J Biol Chem. 1969 Jun 10;244(11):2870–2882. [PubMed] [Google Scholar]
  8. Kenney F. T. Turnover of rat liver tyrosine transaminase: stabilization after inhibition of protein synthesis. Science. 1967 Apr 28;156(3774):525–528. doi: 10.1126/science.156.3774.525. [DOI] [PubMed] [Google Scholar]
  9. Lewis C. M., Fincham J. R. Regulation of nitrate reductase in the basidiomycete Ustilago maydis. J Bacteriol. 1970 Jul;103(1):55–61. doi: 10.1128/jb.103.1.55-61.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Losada M., Paneque A., Aparicio P. J., Vega J. M., Cárdenas J., Herrera J. Inactivation and repression by ammonium of the nitrate reducing system in chlorella. Biochem Biophys Res Commun. 1970 Mar 27;38(6):1009–1015. doi: 10.1016/0006-291x(70)90340-2. [DOI] [PubMed] [Google Scholar]
  11. Nason A., Antoine A. D., Ketchum P. A., Frazier W. A., 3rd, Lee D. K. Formation of assimilatory nitrate reductase by in vitro inter-cistronic complementation in Neurospora crassa. Proc Natl Acad Sci U S A. 1970 Jan;65(1):137–144. doi: 10.1073/pnas.65.1.137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Rigano C. Studies on nitrate reductase from Cyanidium caldarium. Arch Mikrobiol. 1971;76(3):265–276. doi: 10.1007/BF00409121. [DOI] [PubMed] [Google Scholar]
  13. Schrader L. E., Hageman R. H. Regulation of Nitrate Reductase Activity in Corn (Zea mays L.) Seedlings by Endogenous Metabolites. Plant Physiol. 1967 Dec;42(12):1750–1756. doi: 10.1104/pp.42.12.1750. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Smith F. W., Thompson J. F. Regulation of nitrate reductase in excised barley roots. Plant Physiol. 1971 Aug;48(2):219–223. doi: 10.1104/pp.48.2.219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Sorger G. J., Giles N. H. Genetic control of nitrate reductase in Neurospora crassa. Genetics. 1965 Oct;52(4):777–788. doi: 10.1093/genetics/52.4.777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Sorger G. J. Nitrate reductase electron transport systems in mutant and in wild-type strains of Neurospora. Biochim Biophys Acta. 1966 Jun 15;118(3):484–494. doi: 10.1016/s0926-6593(66)80091-7. [DOI] [PubMed] [Google Scholar]
  17. Subramanian K. N., Padmanaban G., Sarma P. S. The regulation of nitrate reductase and catalase by amino acids in Neurospora crassa. Biochim Biophys Acta. 1968 Jan 8;151(1):20–32. doi: 10.1016/0005-2744(68)90157-5. [DOI] [PubMed] [Google Scholar]
  18. Subramanian K. N., Sorger G. J. The role of molybdenum in the synthesis of Neurospora nitrate reductase. Biochim Biophys Acta. 1972 Feb 28;256(2):533–543. doi: 10.1016/0005-2728(72)90081-3. [DOI] [PubMed] [Google Scholar]
  19. Sussman M., Sussman R. R. The regulatory program for UDPgalactose polysaccharide transferase activity during slime mold cytodifferentiation: requirement for specific synthesis of ribonucleic acid. Biochim Biophys Acta. 1965 Nov 8;108(3):463–473. doi: 10.1016/0005-2787(65)90038-9. [DOI] [PubMed] [Google Scholar]
  20. Zielke H. R., Filner P. Synthesis and turnover of nitrate reductase induced by nitrate in cultured tobacco cells. J Biol Chem. 1971 Mar 25;246(6):1772–1779. [PubMed] [Google Scholar]
  21. Zucker M. Sequential Induction of Phenylalanine Ammonia-lyase and a Lyase-inactivating System in Potato Tuber Disks. Plant Physiol. 1968 Mar;43(3):365–374. doi: 10.1104/pp.43.3.365. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES