Abstract
Utilization of labeled exogenous deoxythymidine (TdR) for deoxyribonucleic acid (DNA) synthesis is widely used as a measure of DNA synthesis itself, on the assumption that the degree of participation (DP) of TdR in the overall synthesis of deoxythymidine monophosphate in DNA is constant under a variety of conditions. It is now found that in Escherichia coli DP (ratio of exogenous TdR incorporated into DNA to total TdR content of DNA) depends on many factors. In basal medium, DP is 38% in wild-type strain K-12SH and 48% in strain K-12SH28 mutated in the TdR phosphorylase gene. In thymine-requiring (T−) mutants having a functional TdR phosphorylase, DP is less than 100%. Shortening the doubling time of the cells by supplementing basal medium with all amino acids increases DP of K-12SH and K-12SH28 by 25%, and T− strains do reach 100%. Slowing cell growth by lowering the temperature to 30 C results in a decrease of DP by 15%. In the logarithmic phase, DP is higher than in the beginning of the stationary phase. It appears that exogenous TdR is more convenient for DNA synthesis during faster cell growth.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BURTON K. A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem J. 1956 Feb;62(2):315–323. doi: 10.1042/bj0620315. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bean B., Tomasz A. Inhibitory effects and metabolism of 5-fluoropyrimidine derivatives in pneumococcus. J Bacteriol. 1971 May;106(2):412–420. doi: 10.1128/jb.106.2.412-420.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boyle J. V., Jones M. E. Effects of ribonucleosides on thymidine incorporation: selective reversal of the inhibition of deoxyribonucleic acid synthesis in thymineless auxotrophs of Escherichia coli. J Bacteriol. 1970 Oct;104(1):264–271. doi: 10.1128/jb.104.1.264-271.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Budman D. R., Pardee A. B. Thymidine and thymine incorporation into deoxyribonucleic acid: inhibition and repression by uridine of thymidine phosphorylase of Escherichia coli. J Bacteriol. 1967 Nov;94(5):1546–1550. doi: 10.1128/jb.94.5.1546-1550.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CRAWFORD L. V. Thymine metabolism in strains of Escherichia coli. Biochim Biophys Acta. 1958 Nov;30(2):428–429. doi: 10.1016/0006-3002(58)90071-4. [DOI] [PubMed] [Google Scholar]
- Cannon W. D., Jr, Breitman T. R. Control of deoxynucleotide biosynthesis in Escherichia coli. I. Decrease of pyrimidine deoxynucleotide biosynthesis in vivo in the presence of deoxythymidylate. Biochemistry. 1967 Mar;6(3):810–816. doi: 10.1021/bi00855a022. [DOI] [PubMed] [Google Scholar]
- Cannon W. D., Jr, Breitman T. R. Control of deoxynucleotide biosynthesis in Escherichia coli. II. Effect of deoxythymidylate on the biosynthesis of both deoxynucleotides and ribonucleotide reductase. Arch Biochem Biophys. 1968 Sep 20;127(1):534–542. doi: 10.1016/0003-9861(68)90259-2. [DOI] [PubMed] [Google Scholar]
- Carmody J. M., Herriott R. M. Thymine and thymidine uptake by Haemophilus influenzae and the labeling of deoxyribonucleic acid. J Bacteriol. 1970 Feb;101(2):525–530. doi: 10.1128/jb.101.2.525-530.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cohen S. S., Flaks J. G., Barner H. D., Loeb M. R., Lichtenstein J. THE MODE OF ACTION OF 5-FLUOROURACIL AND ITS DERIVATIVES. Proc Natl Acad Sci U S A. 1958 Oct 15;44(10):1004–1012. doi: 10.1073/pnas.44.10.1004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DUNN D. B., SMITH J. D., ZAMENHOF S., GRIBOFF G. Incorporation of halogenated pyrimidines into the deoxyribonucleic acids of Bacterium coli and its bacteriophages. Nature. 1954 Aug 14;174(4424):305–307. [PubMed] [Google Scholar]
- Fangman W. L., Novick A. Mutant bacteria showing efficient utilization of thymidine. J Bacteriol. 1966 Jun;91(6):2390–2391. doi: 10.1128/jb.91.6.2390-2391.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fangman W. L. Specificity and efficiency of thymidine incorporation in Escherichia coli lacking thymidine phosphorylase. J Bacteriol. 1969 Sep;99(3):681–687. doi: 10.1128/jb.99.3.681-687.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hammer-Jespersen K., Munch-Petersen A., Schwartz M., Nygaard P. Induction of enzymes involed in the catabolism of deoxyribonucleosides and ribonucleosides in Escherichia coli K 12. Eur J Biochem. 1971 Apr 30;19(4):533–538. doi: 10.1111/j.1432-1033.1971.tb01345.x. [DOI] [PubMed] [Google Scholar]
- MANTSAVINOS R., ZAMENHOF S. Pathways for the biosynthesis of thymidylic acid in bacterial mutants. J Biol Chem. 1961 Mar;236:876–882. [PubMed] [Google Scholar]
- Margolis F. L. DNA and DNA-polymerase activity in chicken brain regions during ontogeny. J Neurochem. 1969 Mar;16(3):447–456. doi: 10.1111/j.1471-4159.1969.tb10385.x. [DOI] [PubMed] [Google Scholar]
- Munch-Petersen A. Deoxyribonucleoside catabolism and thymine incorporation in mutants of Escherichia coli lacking deoxyriboaldolase. Eur J Biochem. 1970 Jul;15(1):191–202. doi: 10.1111/j.1432-1033.1970.tb00994.x. [DOI] [PubMed] [Google Scholar]
- Munch-Petersen A. On the catabolism of deoxyribonucleosides in cells and cell extracts of Escherichia coli. Eur J Biochem. 1968 Nov;6(3):432–442. doi: 10.1111/j.1432-1033.1968.tb00465.x. [DOI] [PubMed] [Google Scholar]
- Munch-Petersen A. Thymidine breakdown and thymine uptake in different mutants of Escherichia coli. Biochim Biophys Acta. 1967 Jun 20;142(1):228–237. doi: 10.1016/0005-2787(67)90530-8. [DOI] [PubMed] [Google Scholar]
- Neuhard J., Thomassen E. Deoxycytidine triphosphate deaminase: identification and function in Salmonella typhimurium. J Bacteriol. 1971 Feb;105(2):657–665. doi: 10.1128/jb.105.2.657-665.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- O'Donovan G. A., Edlin G., Fuchs J. A., Neuhard J., Thomassen E. Deoxycytidine triphosphate deaminase: characterization of an Escherichia coli mutant deficient in the enzyme. J Bacteriol. 1971 Feb;105(2):666–672. doi: 10.1128/jb.105.2.666-672.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- O'Donovan G. A., Neuhard J. Pyrimidine metabolism in microorganisms. Bacteriol Rev. 1970 Sep;34(3):278–343. doi: 10.1128/br.34.3.278-343.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- RACHMELER M., GERHART J., ROSNER J. Limited thymidine uptake in Escherichia coli due to an inducible thymidine phosphorylase. Biochim Biophys Acta. 1961 Apr 29;49:222–225. doi: 10.1016/0006-3002(61)90888-5. [DOI] [PubMed] [Google Scholar]
- Schwartz M. Thymidine phosphorylase from Escherichia coli. Properties and kinetics. Eur J Biochem. 1971 Jul 29;21(2):191–198. doi: 10.1111/j.1432-1033.1971.tb01455.x. [DOI] [PubMed] [Google Scholar]
- Spizizen J. TRANSFORMATION OF BIOCHEMICALLY DEFICIENT STRAINS OF BACILLUS SUBTILIS BY DEOXYRIBONUCLEATE. Proc Natl Acad Sci U S A. 1958 Oct 15;44(10):1072–1078. doi: 10.1073/pnas.44.10.1072. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sueoka N. CORRELATION BETWEEN BASE COMPOSITION OF DEOXYRIBONUCLEIC ACID AND AMINO ACID COMPOSITION OF PROTEIN. Proc Natl Acad Sci U S A. 1961 Aug;47(8):1141–1149. doi: 10.1073/pnas.47.8.1141. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yagil E., Rosner A. Effect of adenosine and deoxyadenosine on the incorporation and breakdown of thymidine in Escherichia coli K-12. J Bacteriol. 1970 Aug;103(2):417–421. doi: 10.1128/jb.103.2.417-421.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yagil E., Rosner A. Phosphorolysis of 5-fluoro-2'-deoxyuridine in Escherichia coli and its inhibition by nucleosides. J Bacteriol. 1971 Nov;108(2):760–764. doi: 10.1128/jb.108.2.760-764.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ZAMENHOF S., DE GIOVANNI R., RICH K. Escherichia coli containing unnatural pyrimidines in its deoxyribonucleic acid. J Bacteriol. 1956 Jan;71(1):60–69. doi: 10.1128/jb.71.1.60-69.1956. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zamenhof S., Arikawa S. Studies on depurination and alkylation of DNA's of different base compositions. Mol Pharmacol. 1966 Nov;2(6):570–573. [PubMed] [Google Scholar]
- Zamenhof S., Grauel L., Van Marthens E., Stillinger R. A. Quantitative determination of DNA in preserved brains and brain sections. J Neurochem. 1972 Jan;19(1):61–68. doi: 10.1111/j.1471-4159.1972.tb01253.x. [DOI] [PubMed] [Google Scholar]