Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1972 May;110(2):691–698. doi: 10.1128/jb.110.2.691-698.1972

Induction and Characterization of β-Galactosidase in an Extreme Thermophile

J T Ulrich a,1, G A McFeters a, K L Temple a
PMCID: PMC247466  PMID: 5022173

Abstract

A thermostable β-galactosidase (EC 3.2.1.23; β-dgalactoside galactohydrolase) was found to be inducible in an extreme thermophile resembling Thermus aquaticus. Enzyme induction was achieved by the addition of lactose, galactose, or the α-galactoside, melibiose, to growing cultures. The addition of glucose to induced cultures had a repressive effect on further enzyme synthesis. The enzyme was purified 78-fold, and the optimum temperature and pH for activity were determined to be 80 C and pH 5.0, respectively. The enzyme was activated by both manganese and ferrous iron. Sulfhydryl activation and thermal stabilization indicate that the thermophilic β-galactosidase is a sulfhydryl enzyme. Kinetic determinations at 80 C established a Km of 2.0 × 10−3m for the chromogenic substrate o-nitrophenyl β-d-galactopyranoside (ONPG) and a K1 of 7.5 × 10−3m for lactose. The Arrhenius energy of activation (for the hydrolysis of ONPG) was calculated to be 13.7 kcal/mole. A molecular weight of 5.7 × 105 daltons was estimated by elution of the enzyme from Sephadex 4B.

Full text

PDF
691

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ANDERSON J. M., RICKENBERG H. V. beta-Galactosidase of Paracolobactrum aerogenoides. J Bacteriol. 1960 Sep;80:297–304. doi: 10.1128/jb.80.3.297-304.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Amelunxen R., Lins M. Comparative thermostability of enzymes from Bacillus stearothermophilus and Bacillus cereus. Arch Biochem Biophys. 1968 Jun;125(3):765–769. doi: 10.1016/0003-9861(68)90512-2. [DOI] [PubMed] [Google Scholar]
  3. Bauman A. J., Simmonds P. G. Fatty acids and polar lipids of extremely thermophilic filamentous bacterial masses from two Yellowstone hot springs. J Bacteriol. 1969 May;98(2):528–531. doi: 10.1128/jb.98.2.528-531.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brock T. D., Freeze H. Thermus aquaticus gen. n. and sp. n., a nonsporulating extreme thermophile. J Bacteriol. 1969 Apr;98(1):289–297. doi: 10.1128/jb.98.1.289-297.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. CITTI J. E., SANDINE W. E., ELLIKER P. R. BETA-GALACTOSIDASE OF STREPTOCOCCUS LACTIS. J Bacteriol. 1965 Apr;89:937–942. doi: 10.1128/jb.89.4.937-942.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. CRAVEN G. R., STEERS E., Jr, ANFINSEN C. B. PURIFICATION, COMPOSITION, AND MOLECULAR WEIGHT OF THE BETA-GALACTOSIDASE OF ESCHERICHIA COLI K12. J Biol Chem. 1965 Jun;240:2468–2477. [PubMed] [Google Scholar]
  7. Campbell L. L., Pace B. Physiology of growth at high temperatures. J Appl Bacteriol. 1968 Mar;31(1):24–35. doi: 10.1111/j.1365-2672.1968.tb00338.x. [DOI] [PubMed] [Google Scholar]
  8. Daron H. H. Fatty acid composition of lipid extracts of a thermophilic Bacillus species. J Bacteriol. 1970 Jan;101(1):145–151. doi: 10.1128/jb.101.1.145-151.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Freeze H., Brock T. D. Thermostable aldolase from Thermus aquaticus. J Bacteriol. 1970 Feb;101(2):541–550. doi: 10.1128/jb.101.2.541-550.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Howard R. L., Becker R. R. Isolation and some properties of the triphosphopyridine nucleotide isocitrate dehydrogenase from Bacillus stearothermophilus. J Biol Chem. 1970 Jun;245(12):3186–3194. [PubMed] [Google Scholar]
  11. Hunter S. H. Organic Growth Essentials of the Aerobic Nonsulfur Photosynthetic Bacteria. J Bacteriol. 1946 Aug;52(2):213–221. doi: 10.1128/jb.52.2.213-221.1946. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. KOPPEL J. L., PORTER C. J., CROCKER B. F. The mechanism of the synthesis of enzymes. I. Development of a system suitable for studying this phenomenon. J Gen Physiol. 1953 May;36(5):703–722. doi: 10.1085/jgp.36.5.703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. LEDERBERG J. The beta-d-galactosidase of Escherichia coli, strain K-12. J Bacteriol. 1950 Oct;60(4):381–392. doi: 10.1128/jb.60.4.381-392.1950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  15. Langridge J. Thermal responses of mutant enzymes and temperature limits to growth. Mol Gen Genet. 1968;103(2):116–126. doi: 10.1007/BF00427139. [DOI] [PubMed] [Google Scholar]
  16. Llanes B., McFall E. Role of lac genes in induction of beta-galactosidase synthesis by galactose. J Bacteriol. 1969 Jan;97(1):223–229. doi: 10.1128/jb.97.1.223-229.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. MCCLATCHY J. K., ROSENBLUM E. D. INDUCTION OF LACTOSE UTILIZATION IN STAPHYLOCOCCUS AUREUS. J Bacteriol. 1963 Dec;86:1211–1215. doi: 10.1128/jb.86.6.1211-1215.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. McFeters G. A., Sandine W. E., Becker R. R., Elliker P. R. Some factors affecting association-dissociation of beta-galactosidase from Streptococcus lactis 7962. Can J Microbiol. 1969 Jan;15(1):105–110. doi: 10.1139/m69-016. [DOI] [PubMed] [Google Scholar]
  19. Ogasahara K., Imanishi A., Isemura T. Studies on thermophilic alpha-amylase from Bacillus stearothermophilus. I. Some general and physico-chemical properties of thermophilic alpha-amylase. J Biochem. 1970 Jan;67(1):65–75. doi: 10.1093/oxfordjournals.jbchem.a129235. [DOI] [PubMed] [Google Scholar]
  20. RICKENBERG H. V. Occurrence of beta-galactosidase in the genus Shigella. J Bacteriol. 1960 Sep;80:421–422. doi: 10.1128/jb.80.3.421-422.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Singleton R., Jr, Kimmel J. R., Amelunxen R. E. The amino acid composition and other properties of thermostable glyceraldehyde 3-phosphate dehydrogenase from Bacillus stearothermophilus. J Biol Chem. 1969 Mar 25;244(6):1623–1630. [PubMed] [Google Scholar]
  22. Zeikus J. G., Taylor M. W., Brock T. D. Thermal stability of ribosomes and RNA from Thermus aquaticus. Biochim Biophys Acta. 1970 Apr 15;204(2):512–520. doi: 10.1016/0005-2787(70)90171-1. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES