Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1972 Jun;110(3):1022–1031. doi: 10.1128/jb.110.3.1022-1031.1972

Lytic Replication of Coliphage Lambda in Salmonella typhosa Hybrids

L S Baron 1, I R Ryman 1, E M Johnson 1, P Gemski Jr 1
PMCID: PMC247524  PMID: 4555401

Abstract

Hybrids between Escherichia coli K-12 and Salmonella typhosa which conserved a continuous K-12 chromosomal diploid segment extending from pro through ara to the strA locus were sensitive to plaque formation by wild-type λ. These partially diploid S. typhosa hybrids could be lysogenized with λ and subsequently induced to produce infectious phage particles. When the K-12 genes were segregated from a lysogenic S. typhosa hybrid, phage-productive ability was no longer detectable due to loss of a genetic region necessary for vegetative replication of λ. However, λ prophage was shown to persist in a quiescent state in the S. typhosa hybrid segregant with phage-productive ability being reactivated after replacement of the essential K-12 λ replication region. Low-frequency transduction and high-frequency transduction lysates containing the gal+ genes of S. typhosa were prepared by induction of λ-lysogenic S. typhosa hybrids indicating that the attλ site is chromosomally located in S. typhosa in close proximity to the gal locus as in E. coli K-12. After propagation in S. typhosa hybrids, λ was subject to restriction by E. coli K-12 recipients, thus establishing that S. typhosa does not perform the K-12 modification of λ deoxyribonucleic acid. Hybrids of S. typhosa, however, did not restrict λ grown previously on E. coli K-12. The K-12 genetic region required for λ phage production in S. typhosa was located within min 66 to min 72 on the genetic map of the E. coli chromosome. Transfer of an F-merogenote encompassing the 66 to 72 min E. coli chromosomal region to λ-insensitive S. typhosa hybrids enabled them to replicate wild-type λ. The λ-insensitive S. typhosa hybrid, WR4255, which blocks λ replication, can be mutagenized to yield mutant strains sensitive to λvir and λimm434. These WR4255 mutants remained insensitive to plaque formation by wild-type λ.

Full text

PDF
1022

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BARON L. S., SPILMAN W. M., CAREY W. F. Diploid heterozygous hybrids from matings between Escherichia coli and Salmonella typhosa. J Exp Med. 1960 Aug 1;112:361–372. doi: 10.1084/jem.112.2.361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BARON L. S., SPILMAN W. M., CAREY W. F. Hybridization of Salmonella species by mating with Escherichia coli. Science. 1959 Sep 4;130(3375):566–567. doi: 10.1126/science.130.3375.566. [DOI] [PubMed] [Google Scholar]
  3. BERTANI G., WEIGLE J. J. Host controlled variation in bacterial viruses. J Bacteriol. 1953 Feb;65(2):113–121. doi: 10.1128/jb.65.2.113-121.1953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Baron L. S., Carey W. F., Spilman W. M. GENETIC RECOMBINATION BETWEEN ESCHERICHIA COLI AND SALMONELLA TYPHIMURIUM. Proc Natl Acad Sci U S A. 1959 Jul;45(7):976–984. doi: 10.1073/pnas.45.7.976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Baron L. S., Penido E., Ryman I. R., Falkow S. Behavior of coliphage lambda in hybrids between Escherichia coli and Salmonella. J Bacteriol. 1970 Apr;102(1):221–233. doi: 10.1128/jb.102.1.221-233.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Butler B., Echols H. Regulation of bacteriophage lambda development by gene N: properties of a mutation that bypasses N control of late protein synthesis. Virology. 1970 Feb;40(2):212–222. doi: 10.1016/0042-6822(70)90396-x. [DOI] [PubMed] [Google Scholar]
  7. Calendar R., Lindqvist B., Sironi G., Clark A. J. Characterization of REP- mutants and their interaction with P2 phage. Virology. 1970 Jan;40(1):72–83. doi: 10.1016/0042-6822(70)90380-6. [DOI] [PubMed] [Google Scholar]
  8. Denhardt D. T., Dressler D. H., Hathaway A. THE ABORTIVE REPLICATION OF PhiX174 DNA IN A RECOMBINATION-DEFICIENT MUTANT OF Escherichia coli. Proc Natl Acad Sci U S A. 1967 Mar;57(3):813–820. doi: 10.1073/pnas.57.3.813. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Falkow S., Baron L. S. Plasmid formation after lambda bacteriophage infection of Escherichia coli-Salmonella typhosa hybrids. J Bacteriol. 1970 Apr;102(1):288–290. doi: 10.1128/jb.102.1.288-290.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Falkow S., Rownd R., Baron L. S. GENETIC HOMOLOGY BETWEEN ESCHERICHIA COLI K-12 AND SALMONELLA. J Bacteriol. 1962 Dec;84(6):1303–1312. doi: 10.1128/jb.84.6.1303-1312.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hopkins N. Bypassing a positive regulator: isolation of a lambda mutant that does not require N product to grow. Virology. 1970 Feb;40(2):223–229. doi: 10.1016/0042-6822(70)90397-1. [DOI] [PubMed] [Google Scholar]
  12. JOHNSON E. M., FALKOW S., BARON L. S. CHROMOSOME TRANSFER KINETICS OF SALMONELLA HFR STRAINS. J Bacteriol. 1964 Aug;88:395–400. doi: 10.1128/jb.88.2.395-400.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. JOHNSON E. M., FALKOW S., BARON L. S. RECIPIENT ABILITY OF SALMONELLA TYPHOSA IN GENETIC CROSSES WITH ESCHERICHIA COLI. J Bacteriol. 1964 Jan;87:54–60. doi: 10.1128/jb.87.1.54-60.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. JOHNSON E. M., KRAUSKOPF B., BARON L. S. GENETIC MAPPING OF VI AND SOMATIC ANTIGENIC DETERMINANTS IN SALMONELLA. J Bacteriol. 1965 Aug;90:302–308. doi: 10.1128/jb.90.2.302-308.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Johnson E. M., Easterling S. B., Baron L. S. Conservation and transfer of Escherichia coli genetic segments by partial diploid Hfr strains of Salmonella typhosa. J Bacteriol. 1970 Nov;104(2):668–673. doi: 10.1128/jb.104.2.668-673.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Johnson E. M., Krauskopf B., Baron L. S. Genetic analysis of the ViA-his chromosomal region in Salmonella. J Bacteriol. 1966 Nov;92(5):1457–1463. doi: 10.1128/jb.92.5.1457-1463.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kayajanian G. Plating of lambda derivatives on an Escherichia coli-Salmonella typhosa hybrid. Virology. 1970 Mar;40(3):763–767. doi: 10.1016/0042-6822(70)90225-4. [DOI] [PubMed] [Google Scholar]
  18. Low B. Formation of merodiploids in matings with a class of Rec- recipient strains of Escherichia coli K12. Proc Natl Acad Sci U S A. 1968 May;60(1):160–167. doi: 10.1073/pnas.60.1.160. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Naha P. M. Bacterial control of lambda replication. I. Initial characterization of a rep mutation of Escherichia coli K12. Virology. 1968 Nov;36(3):434–441. doi: 10.1016/0042-6822(68)90168-2. [DOI] [PubMed] [Google Scholar]
  20. Pironio M., Ghysen A. A bacterial mutation which affects recognition of the N gene product of bacteriophage lambda. Mol Gen Genet. 1970;108(4):374–375. doi: 10.1007/BF00267775. [DOI] [PubMed] [Google Scholar]
  21. Smith G. R. Specialized transduction of the Salmonella hut operons by coliphage lambda: deletion analysis of the hut operons employing lambda-phut. Virology. 1971 Jul;45(1):208–223. doi: 10.1016/0042-6822(71)90128-0. [DOI] [PubMed] [Google Scholar]
  22. Taylor A. L. Current linkage map of Escherichia coli. Bacteriol Rev. 1970 Jun;34(2):155–175. doi: 10.1128/br.34.2.155-175.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES