Abstract
The role of selenium and molybdenum in the metabolism of Escherichia coli was explored by growing cells in a simple salts medium and examining the metabolic consequences of altering the concentration of molybdenum and selenium compounds in the medium. The addition of tungstate increased the molybdate deficiency of this medium, as reflected by lowered levels of enzyme systems previously recognized to require compounds of molybdenum and selenium for their formation [formate-dependent oxygen reduction, formate dehydrogenase (FDH) (EC 1.2.2.1), and nitrate reductase (EC 1.9.6.1)]. The requirement for selenium and molybdenum appears to be unique to the enzymes of formate and nitrate metabolism since molybdate- and selenite-deficient medium had no effect on the level of several dehydrogenase and oxidase systems, for which the electron donors were reduced nicotinamide adenine dinucleotide, succinate, d- or l-lactate, and glycerol. In addition, no effect was observed on the growth rate or cell yield with any carbon source tested (glucose, glycerol, dl-lactate, acetate, succinate, and l-malate) when the medium was deficient in molybdenum and selenium. dl-Selenocystine was about as effective as selenite in stimulating the formation of formate dehydrogenase, whereas dl-selenomethionine was only 1% as effective. In aerobic cells, an amount of FDH was formed such that 3,200 or 3,800 moles of formate were oxidized per min per mole of added selenium (added as dl-selenocystine or selenite, respectively).
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Albracht S. P., Slater E. C. Molybdenum associated with NADH dehydrogenase in complex I. Biochim Biophys Acta. 1970 Dec 8;223(2):457–459. doi: 10.1016/0005-2728(70)90209-4. [DOI] [PubMed] [Google Scholar]
- COWIE D. B., COHEN G. N. Biosynthesis by Escherichia coli of active altered proteins containing selenium instead of sulfur. Biochim Biophys Acta. 1957 Nov;26(2):252–261. doi: 10.1016/0006-3002(57)90003-3. [DOI] [PubMed] [Google Scholar]
- Dervartanian D. V., Bramlett R. Electron paramagnetic resonance studies of 95Mo-enriched NADH dehydrogenase isolated from iron-deficient Azotobacter vinelandii. Biochim Biophys Acta. 1970 Dec 16;220(3):443–448. doi: 10.1016/0005-2744(70)90275-5. [DOI] [PubMed] [Google Scholar]
- Diplock A. T., Baum H., Lucy J. A. The effect of vitamin E on the oxidation state of selenium in rat liver. Biochem J. 1971 Aug;123(5):721–729. doi: 10.1042/bj1230721. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dixon M. The acceptor specificity of flavins and flavoproteins. I. Techniques for anaerobic spectrophotometry. Biochim Biophys Acta. 1971 Mar 2;226(2):241–258. doi: 10.1016/0005-2728(71)90092-2. [DOI] [PubMed] [Google Scholar]
- Fukuyama T., Ordal E. J. Induced Biosynthesis of Formic Hydrogenlyase in Iron-Deficient Cells of Escherichia coli. J Bacteriol. 1965 Sep;90(3):673–680. doi: 10.1128/jb.90.3.673-680.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heimer Y. M., Filner P. Regulation of the nitrate assimilation pathway in cultured tobacco cells. 3. The nitrate uptake system. Biochim Biophys Acta. 1971 Feb 23;230(2):362–372. doi: 10.1016/0304-4165(71)90223-6. [DOI] [PubMed] [Google Scholar]
- KEMP J. D., ATKINSON D. E., EHRET A., LAZZARINI R. A. EVIDENCE FOR THE IDENTITY OF THE NICOTINAMIDE ADENINE DINUCLEOTIDE PHOSPHATE-SPECIFIC SULFITE AND NITRITE REDUCTASES OF ESCHERICHIA COLI. J Biol Chem. 1963 Oct;238:3466–3471. [PubMed] [Google Scholar]
- Kundig W., Roseman S. Sugar transport. II. Characterization of constitutive membrane-bound enzymes II of the Escherichia coli phosphotransferase system. J Biol Chem. 1971 Mar 10;246(5):1407–1418. [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lester R. L., DeMoss J. A. Effects of molybdate and selenite on formate and nitrate metabolism in Escherichia coli. J Bacteriol. 1971 Mar;105(3):1006–1014. doi: 10.1128/jb.105.3.1006-1014.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Levine V. E. THE REDUCING PROPERTIES OF MICROORGANISMS WITH SPECIAL REFERENCE TO SELENIUM COMPOUNDS. J Bacteriol. 1925 May;10(3):217–263. doi: 10.1128/jb.10.3.217-263.1925. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Notton B. A., Hewitt E. J. The role of tungsten in the inhibition of nitrate reductase activity in spinach (spinacea oleracea L.) leaves. Biochem Biophys Res Commun. 1971 Aug 6;44(3):702–710. doi: 10.1016/s0006-291x(71)80140-7. [DOI] [PubMed] [Google Scholar]
- Orme-Johnson N. R., Orme-Johnson W. H., Hansen R. E., Beinert H., Hatefi Y. EPR detectable electron acceptors in submitochondrial particles from beef heart with special reference to the iron-sulfur components of DPNH-ubiquinone reductase. Biochem Biophys Res Commun. 1971 Jul 16;44(2):446–452. doi: 10.1016/0006-291x(71)90621-8. [DOI] [PubMed] [Google Scholar]
- PINSENT J. The need for selenite and molybdate in the formation of formic dehydrogenase by members of the coli-aerogenes group of bacteria. Biochem J. 1954 May;57(1):10–16. doi: 10.1042/bj0570010. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pichinoty F. Les nitrate-réductases bactériennes. 3. Propriétés de l'enzyme B. Bull Soc Chim Biol (Paris) 1969 Oct;51(5):875–890. [PubMed] [Google Scholar]
- Pichinoty F., Piéchaud M. Recherche des nitrate-réductases bactériennes A et B: méthodes. Ann Inst Pasteur (Paris) 1968 Jan;114(1):77–98. [PubMed] [Google Scholar]
- SCHWARZ K. ROLE OF VITAMIN E, SELENIUM, AND RELATED FACTORS IN EXPERIMENTAL NUTRITIONAL LIVER DISEASE. Fed Proc. 1965 Jan-Feb;24:58–67. [PubMed] [Google Scholar]
- SINGER T. P., KEARNEY E. B. Determination of succinic dehydrogenase activity. Methods Biochem Anal. 1957;4:307–333. doi: 10.1002/9780470110201.ch9. [DOI] [PubMed] [Google Scholar]
- SMITH H. G. On the nature of the selective action of selenite broth. J Gen Microbiol. 1959 Aug;21:61–71. doi: 10.1099/00221287-21-1-61. [DOI] [PubMed] [Google Scholar]
- TAKAHASHI H., NASON A. Tungstate as competitive inhibitor of molybdate in nitrate assimilation and in N2 fixation by Azotobacter. Biochim Biophys Acta. 1957 Feb;23(2):433–435. doi: 10.1016/0006-3002(57)90351-7. [DOI] [PubMed] [Google Scholar]
- TANIGUCHI S., ITAGAKI E. Nitrate reductase of nitrate respiration type from E. coli. I. Solubilization and purification from the particulate system with molecular characterization as a metalloprotein. Biochim Biophys Acta. 1960 Nov 4;44:263–279. doi: 10.1016/0006-3002(60)91562-6. [DOI] [PubMed] [Google Scholar]
- TAPPEL A. L. FREE-RADICAL LIPID PEROXIDATION DAMAGE AND ITS INHIBITION BY VITAMIN E AND SELENIUM. Fed Proc. 1965 Jan-Feb;24:73–78. [PubMed] [Google Scholar]
- TUVE T., WILLIAMS H. H. Metabolism of selenium by Escherichia coli: biosynthesis of selenomethionine. J Biol Chem. 1961 Feb;236:597–601. [PubMed] [Google Scholar]
- Thompson J. N., Scott M. L. Role of selenium in the nutrition of the chick. J Nutr. 1969 Mar;97(3):335–342. doi: 10.1093/jn/97.3.335. [DOI] [PubMed] [Google Scholar]
- Tsibris J. C., Namtvedt M. J., Gunsalus I. C. Selenium as an acid labile sulfur replacement in putidaredoxin. Biochem Biophys Res Commun. 1968 Feb 15;30(3):323–327. doi: 10.1016/0006-291x(68)90454-3. [DOI] [PubMed] [Google Scholar]
- WILSON L. G., BANDURSKI R. S. Enzymatic reactions involving sulfate, sulfite, selenate, and molybdate. J Biol Chem. 1958 Oct;233(4):975–981. [PubMed] [Google Scholar]
- Weiss K. F., Ayres J. C., Kraft A. A. Inhibitory action of selenite on Escherichia coli, Proteus vulgaris, and Salmonella thompson. J Bacteriol. 1965 Oct;90(4):857–862. doi: 10.1128/jb.90.4.857-862.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]