Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1989 Jan;63(1):436–440. doi: 10.1128/jvi.63.1.436-440.1989

Intrinsic resistance of feline peritoneal macrophages to coronavirus infection correlates with in vivo virulence.

C A Stoddart 1, F W Scott 1
PMCID: PMC247703  PMID: 2521188

Abstract

Cats infected with virulent feline coronavirus strains develop feline infectious peritonitis, an invariably fatal, immunologically mediated disease; avirulent strains cause either clinically inapparent infection or mild enteritis. Four virulent coronavirus isolates and five avirulent isolates were assessed by immunofluorescence and virus titration for their ability to infect and replicate in feline peritoneal macrophages in vitro. The avirulent coronaviruses infected fewer macrophages, produced lower virus titers, were less able to sustain viral replication, and spread less efficiently to other susceptible macrophages than the virulent coronaviruses. Thus, the intrinsic resistance of feline macrophages may play a pivotal role in the outcome of coronavirus infection in vivo.

Full text

PDF
436

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Evermann J. F., Baumgartener L., Ott R. L., Davis E. V., McKeirnan A. J. Characterization of a feline infectious peritonitis virus isolate. Vet Pathol. 1981 Mar;18(2):256–265. doi: 10.1177/030098588101800214. [DOI] [PubMed] [Google Scholar]
  2. Fiscus S. A., Rivoire B. L., Teramoto Y. A. Epitope-specific antibody responses to virulent and avirulent feline infectious peritonitis virus isolates. J Clin Microbiol. 1987 Aug;25(8):1529–1534. doi: 10.1128/jcm.25.8.1529-1534.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Fiscus S. A., Teramoto Y. A. Antigenic comparison of feline coronavirus isolates: evidence for markedly different peplomer glycoproteins. J Virol. 1987 Aug;61(8):2607–2613. doi: 10.1128/jvi.61.8.2607-2613.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Fiscus S. A., Teramoto Y. A. Functional differences in the peplomer glycoproteins of feline coronavirus isolates. J Virol. 1987 Aug;61(8):2655–2657. doi: 10.1128/jvi.61.8.2655-2657.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Halstead S. B., Tom M. C., Elm J. L., Jr In vitro virulence marker: growth of dengue-2 virus in human leukocyte suspension cultures. Infect Immun. 1981 Jan;31(1):102–106. doi: 10.1128/iai.31.1.102-106.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Jacobse-Geels H. E., Horzinek M. C. Expression of feline infectious peritonitis coronavirus antigens on the surface of feline macrophage-like cells. J Gen Virol. 1983 Sep;64(Pt 9):1859–1866. doi: 10.1099/0022-1317-64-9-1859. [DOI] [PubMed] [Google Scholar]
  7. Knobler R. L., Tunison L. A., Oldstone M. B. Host genetic control of mouse hepatitis virus type 4 (JHM strain) replication. I. Restriction of virus amplification and spread in macrophages from resistant mice. J Gen Virol. 1984 Sep;65(Pt 9):1543–1548. doi: 10.1099/0022-1317-65-9-1543. [DOI] [PubMed] [Google Scholar]
  8. Lairmore M. D., Akita G. Y., Russell H. I., DeMartini J. C. Replication and cytopathic effects of ovine lentivirus strains in alveolar macrophages correlate with in vivo pathogenicity. J Virol. 1987 Dec;61(12):4038–4042. doi: 10.1128/jvi.61.12.4038-4042.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Mogensen S. C. Role of macrophages in natural resistance to virus infections. Microbiol Rev. 1979 Mar;43(1):1–26. doi: 10.1128/mr.43.1.1-26.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Mogensen S. Role of macrophages in hepatitis induced by Herpes simplex virus types 1 and 2 in mice. Infect Immun. 1977 Mar;15(3):686–691. doi: 10.1128/iai.15.3.686-691.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Morahan P. S., Connor J. R., Leary K. R. Viruses and the versatile macrophage. Br Med Bull. 1985 Jan;41(1):15–21. doi: 10.1093/oxfordjournals.bmb.a072017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. O'Brien S. J., Roelke M. E., Marker L., Newman A., Winkler C. A., Meltzer D., Colly L., Evermann J. F., Bush M., Wildt D. E. Genetic basis for species vulnerability in the cheetah. Science. 1985 Mar 22;227(4693):1428–1434. doi: 10.1126/science.2983425. [DOI] [PubMed] [Google Scholar]
  13. Pedersen N. C., Boyle J. F., Floyd K., Fudge A., Barker J. An enteric coronavirus infection of cats and its relationship to feline infectious peritonitis. Am J Vet Res. 1981 Mar;42(3):368–377. [PubMed] [Google Scholar]
  14. Pedersen N. C., Evermann J. F., McKeirnan A. J., Ott R. L. Pathogenicity studies of feline coronavirus isolates 79-1146 and 79-1683. Am J Vet Res. 1984 Dec;45(12):2580–2585. [PubMed] [Google Scholar]
  15. Pedersen N. C. Morphologic and physical characteristics of feline infectious peritonitis virus and its growth in autochthonous peritoneal cell cultures. Am J Vet Res. 1976 May;37(5):567–572. [PubMed] [Google Scholar]
  16. Pedersen N. C. Virologic and immunologic aspects of feline infectious peritonitis virus infection. Adv Exp Med Biol. 1987;218:529–550. doi: 10.1007/978-1-4684-1280-2_69. [DOI] [PubMed] [Google Scholar]
  17. Petersen N. C., Boyle J. F. Immunologic phenomena in the effusive form of feline infectious peritonitis. Am J Vet Res. 1980 Jun;41(6):868–876. [PubMed] [Google Scholar]
  18. ROBERTS J. A. GROWTH OF VIRULENT AND ATTENUATED ECTROMELIA VIRUS IN CULTURED MACROPHAGES FROM NORMAL AND ECTROMELIAIMMUNE MICE. J Immunol. 1964 Jun;92:837–842. [PubMed] [Google Scholar]
  19. Reynolds D. J., Garwes D. J. Virus isolation and serum antibody responses after infection of cats with transmissible gastroenteritis virus. Brief report. Arch Virol. 1979;60(2):161–166. doi: 10.1007/BF01348032. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Rossiter P. B., Wardley R. C. The differential growth of virulent and avirulent strains of rinderpest virus in bovine lymphocytes and macrophages. J Gen Virol. 1985 May;66(Pt 5):969–975. doi: 10.1099/0022-1317-66-5-969. [DOI] [PubMed] [Google Scholar]
  21. Stohlman S. A., Woodward J. G., Frelinger J. A. Macrophage antiviral activity: extrinsic versus intrinsic activity. Infect Immun. 1982 May;36(2):672–677. doi: 10.1128/iai.36.2.672-677.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Taguchi F., Yamaguchi R., Makino S., Fujiwara K. Correlation between growth potential of mouse hepatitis viruses in macrophages and their virulence for mice. Infect Immun. 1981 Dec;34(3):1059–1061. doi: 10.1128/iai.34.3.1059-1061.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Ward J. M. Morphogenesis of a virus in cats with experimental feline infectious peritonitis. Virology. 1970 May;41(1):191–194. doi: 10.1016/0042-6822(70)90070-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Wege H., Siddell S., ter Meulen V. The biology and pathogenesis of coronaviruses. Curr Top Microbiol Immunol. 1982;99:165–200. doi: 10.1007/978-3-642-68528-6_5. [DOI] [PubMed] [Google Scholar]
  25. Weiss R. C., Scott F. W. Antibody-mediated enhancement of disease in feline infectious peritonitis: comparisons with dengue hemorrhagic fever. Comp Immunol Microbiol Infect Dis. 1981;4(2):175–189. doi: 10.1016/0147-9571(81)90003-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Weiss R. C., Scott F. W. Pathogenesis of feline infetious peritonitis: pathologic changes and immunofluorescence. Am J Vet Res. 1981 Dec;42(12):2036–2048. [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES