Abstract
Butyrivibrio fibrisolvens strain D-1 was grown on a lipid-free chemically defined medium. The lipids were extracted with chloroform-methanol and separated into nonpolar and polar fractions by silicic acid column chromatography. Further separations were made by preparative thin-layer chromatography. The lipid fractions were identified by specific staining reactions and RF values, by phosphorus and nitrogen determinations, by chromatography of hydrolysis products, and by the use of infrared spectroscopy. The major nonpolar lipid was free fatty acid. Four major polar lipids were identified: phosphatidylethanolamine, phosphatidyl glycerol, lipoaminoacid, and glycolipid. The lipoaminoacid contained alanine, leucine, and isoleucine. The glycolipid contained galactose. The major fatty acids identified were C16:0 and C18:1. The significance of the presence of lipoaminoacid is discussed.
Full text
PDF![104](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a34/248044/5ea408f68850/jbacter00378-0126.png)
![105](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a34/248044/b0e635d3cad6/jbacter00378-0127.png)
![106](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a34/248044/0947b2d696c3/jbacter00378-0128.png)
![107](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a34/248044/993f72b45fb2/jbacter00378-0129.png)
![108](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a34/248044/7d75a3877cb2/jbacter00378-0130.png)
![109](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a34/248044/138dbc4268fa/jbacter00378-0131.png)
![110](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a34/248044/c041c8205774/jbacter00378-0132.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ALLISON M. J., BRYANT M. P., DOETSCH R. N. Studies on the metabolic function of branched-chain volatile fatty acids, growth factors for ruminococci. I. Incorporation of isovalerate into leucine. J Bacteriol. 1962 Mar;83:523–532. doi: 10.1128/jb.83.3.523-532.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ALLISON M. J., BRYANT M. P., KATZ I., KEENEY M. Metabolic function of branched-chain volatile fatty acids, growth factors for ruminococci. II. Biosynthesis of higher branched-chain fatty acids and aldehydes. J Bacteriol. 1962 May;83:1084–1093. doi: 10.1128/jb.83.5.1084-1093.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BARTLETT G. R. Phosphorus assay in column chromatography. J Biol Chem. 1959 Mar;234(3):466–468. [PubMed] [Google Scholar]
- BRYANT M. P., ROBINSON I. M. Some nutritional characteristics of predominant culturable ruminal bacteria. J Bacteriol. 1962 Oct;84:605–614. doi: 10.1128/jb.84.4.605-614.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BRYANT M. P., SMALL N. The anaerobic monotrichous butyric acid-producing curved rod-shaped bacteria of the rumen. J Bacteriol. 1956 Jul;72(1):16–21. doi: 10.1128/jb.72.1.16-21.1956. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Caldwell D. R., Keeney M., Van Soest P. J. Effects of carbon dioxide on growth and maltose fermentation by Bacteroides amylophilus. J Bacteriol. 1969 May;98(2):668–676. doi: 10.1128/jb.98.2.668-676.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Coulter J. R., Hann C. S. A practical quantitative gas chromatographic analysis of amino acids using the n-propyl n-acetyl esters. J Chromatogr. 1968 Jul 23;36(1):42–49. [PubMed] [Google Scholar]
- DITTMER J. C., LESTER R. L. A SIMPLE, SPECIFIC SPRAY FOR THE DETECTION OF PHOSPHOLIPIDS ON THIN-LAYER CHROMATOGRAMS. J Lipid Res. 1964 Jan;5:126–127. [PubMed] [Google Scholar]
- Das M. L., Rouser G. Lipid composition of beef heart ventricle. Lipids. 1967 Jan;2(1):1–4. doi: 10.1007/BF02531991. [DOI] [PubMed] [Google Scholar]
- FARQUHAR J. W., INSULL W., Jr, ROSEN P., STOFFEL W., AHRENS E. H., Jr The analysis of fatty acid mixtures by gas-liquid chromatography; construction and operation of an ionization chamber instrument. Nutr Rev. 1959 Aug;17(8 Suppl):1–30. [PubMed] [Google Scholar]
- FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
- HUBSCHER G., HAWTHORNE J. N., KEMP P. The analysis of tissue phospholipids: hydrolysis procedure and results with pig liver. J Lipid Res. 1960 Oct;1:433–438. [PubMed] [Google Scholar]
- Houtsmuller U. M., van Deenen L. L. On the amino acid esters of phosphatidyl glycerol from bacteria. Biochim Biophys Acta. 1965 Dec 2;106(3):564–576. doi: 10.1016/0005-2760(65)90072-x. [DOI] [PubMed] [Google Scholar]
- KATZ I., KEENEY M. THE ISOLATION OF FATTY ALDEHYDES FROM RUMEN-MICROBIAL LIPID. Biochim Biophys Acta. 1964 Apr 20;84:128–132. doi: 10.1016/0926-6542(64)90068-x. [DOI] [PubMed] [Google Scholar]
- Kanemasa Y., Akamatsu Y., Nojima S. Composition and turnover of the phospholipids in Escherichia coli. Biochim Biophys Acta. 1967 Oct 2;144(2):382–390. [PubMed] [Google Scholar]
- ODEN S., VON HOFSTEN B. Detection of fingerprints by the ninhydrin reaction. Nature. 1954 Mar 6;173(4401):449–450. doi: 10.1038/173449a0. [DOI] [PubMed] [Google Scholar]
- Robinson I. M., Allison M. J. Isoleucine biosynthesis from 2-methylbutyric acid by anaerobic bacteria from the rumen. J Bacteriol. 1969 Mar;97(3):1220–1226. doi: 10.1128/jb.97.3.1220-1226.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Skipski V. P., Smolowe A. F., Barclay M. Separation of neutral glycosphingolipids and sulfatides by thin-layer chromatography. J Lipid Res. 1967 Jul;8(4):295–299. [PubMed] [Google Scholar]
- Steiner S., Conti S. F., Lester R. L. Separation and identification of the polar lipids of Chromatium strain D. J Bacteriol. 1969 Apr;98(1):10–15. doi: 10.1128/jb.98.1.10-15.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Urakami C., Umetani K. Compositions of phosphatides from Bacillus natto at various growth phases. Biochim Biophys Acta. 1968 Sep 2;164(1):64–71. [PubMed] [Google Scholar]
- VORBECK M. L., MARINETTI G. V. SEPARATION OF GLYCOSYL DIGLYCERIDES FROM PHOSPHATIDES USING SILICIC ACID COLUMN CHROMATOGRAPHY. J Lipid Res. 1965 Jan;6:3–6. [PubMed] [Google Scholar]
- WHEELDON L. W., COLLINS F. D. Studies on phospholipids. I. The determination of amino nitrogen in unhydrolysed phospholipids. Biochem J. 1957 Jul;66(3):435–441. doi: 10.1042/bj0660435. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wenger D. A., Petitpas J. W., Pieringer R. A. The metabolism of glyceride glycolipids. II. Biosynthesis of monogalactosyl diglyceride from uridine diphosphate galactose and diglyceride in brain. Biochemistry. 1968 Oct;7(10):3700–3707. doi: 10.1021/bi00850a049. [DOI] [PubMed] [Google Scholar]
- Wilkinson S. G. Glycosyl diglycerides from Pseudomonas rubescens. Biochim Biophys Acta. 1968 Oct 22;164(2):148–156. doi: 10.1016/0005-2760(68)90141-0. [DOI] [PubMed] [Google Scholar]
- den Kamp JA O. P., Houtsmuller U. M., van Deenen L. L. On the phospholipids of Bacillus megaterium. Biochim Biophys Acta. 1965 Oct 4;106(2):438–441. doi: 10.1016/0005-2760(65)90059-7. [DOI] [PubMed] [Google Scholar]
- den Kamp J. A., Redai I., van Deenen L. L. Phospholipid composition of Bacillus subtilis. J Bacteriol. 1969 Jul;99(1):298–303. doi: 10.1128/jb.99.1.298-303.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]