Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1970 Jul;103(1):131–139. doi: 10.1128/jb.103.1.131-139.1970

Metabolism of Valine by the Filamentous Fungus Arthrobotrys conoides1

Rishab K Gupta a,2, David Pramer a
PMCID: PMC248048  PMID: 5463679

Abstract

Uptake of valine by Arthrobotrys conoides was an active process and was independent of its incorporation into cellular protein. Chemical fractionation of cells supplied with 14C-l-valine for different time intervals revealed that the amino acid initially entered a pool of metabolic intermediates and was extractable with cold trichloroacetic acid. After a 4-min interval, some intracellular valine was incorporated into cell proteins, but most underwent metabolic transformation to a variety of products that included carboxylic acids and other amino acids. Carbon derived from valine was not localized in the lipid or nucleic acid fraction of cells, but some was completely oxidized and recovered as metabolic 14CO2. Autoradiograms of paper and thin-layer chromatograms of acid hydrolysates of cellular protein identified the following amino acids as having originated from valine: glutamate, aspartate, alanine, and leucine. Similar analysis of cold trichloroacetic acid extracts established that 14C supplied as l-valine had been transformed also to α-ketoisovalerate, isobutyrate, propionate, succinate, malate, oxalacetate, pyruvate, and α-ketoglutarate. Pathways for transformation of the carbon skeleton of valine to various metabolic products are proposed.

Full text

PDF
131

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BRITTEN R. J., McCLURE F. T. The amino acid pool in Escherichia coli. Bacteriol Rev. 1962 Sep;26:292–335. doi: 10.1128/br.26.3.292-335.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Beadle G. W., Tatum E. L. Genetic Control of Biochemical Reactions in Neurospora. Proc Natl Acad Sci U S A. 1941 Nov 15;27(11):499–506. doi: 10.1073/pnas.27.11.499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. CHEFTEL R. I., MUNIER R., MACHEBOEUF M. Microchromatographie sur papier des acides aliphatiques hydrosolubles et non volatils. IV. Technique de révélation des acides dicarboxyliques. Bull Soc Chim Biol (Paris) 1953;35(10):1091–1093. [PubMed] [Google Scholar]
  4. COSCARELLI W., PRAMER D. Nutrition and growth of Arthrobotrys conoides. J Bacteriol. 1962 Jul;84:60–64. doi: 10.1128/jb.84.1.60-64.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. DANCIS J., HUTZLER J., LEVITZ M. THIN-LAYER CHROMATOGRAPHY AND SPECTROPHOTOMETRY OF ALPHA-KETOACID HYDRAZONES. Biochim Biophys Acta. 1963 Oct 8;78:85–90. doi: 10.1016/0006-3002(63)91612-3. [DOI] [PubMed] [Google Scholar]
  6. DATTA S. P., DENT C. E., HARRIS H. An apparatus for the simultaneous production of many two-dimensional paper chromatograms. Science. 1950 Nov 24;112(2917):621–623. doi: 10.1126/science.112.2917.621. [DOI] [PubMed] [Google Scholar]
  7. FONES W. S., WAALKES T. P., WHITE J. The conversion of L-valine to glucose and glycogen in the rat. Arch Biochem Biophys. 1951 Jun;32(1):89–95. doi: 10.1016/0003-9861(51)90241-x. [DOI] [PubMed] [Google Scholar]
  8. Gupta R. K., Pramer D. Amino acid transport by the filamentous fungus Arthrobotrys conoides. J Bacteriol. 1970 Jul;103(1):120–130. doi: 10.1128/jb.103.1.120-130.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. KINNORY D. S., TAKEDA Y., GREENBERG D. M. Chromatography of carboxylic acids on a silica gel column with a benzene-ether solvent system. J Biol Chem. 1955 Jan;212(1):379–383. [PubMed] [Google Scholar]
  10. KINNORY D. S., TAKEDA Y., GREENBERG D. M. Isotope studies on the metabolism of valine. J Biol Chem. 1955 Jan;212(1):385–396. [PubMed] [Google Scholar]
  11. MEISTER A. Transamination. Adv Enzymol Relat Subj Biochem. 1955;16:185–246. doi: 10.1002/9780470122617.ch4. [DOI] [PubMed] [Google Scholar]
  12. Norton J. E., Sokath J. R. Oxidation of D- and L-valine by enzymes of Pseudomonas aeruginosa. J Bacteriol. 1966 Jul;92(1):116–120. doi: 10.1128/jb.92.1.116-120.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. RONKAINEN P. [Thin-layer chromatography of keto acids]. J Chromatogr. 1963 Jun;11:228–237. doi: 10.1016/s0021-9673(01)80897-9. [DOI] [PubMed] [Google Scholar]
  14. Shieh K. Z., Hedrick L. R. Energy requirement for L-glutamate uptake and utilization by Hansenula subpelliculosa cells. J Bacteriol. 1966 Dec;92(6):1638–1644. doi: 10.1128/jb.92.6.1638-1644.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Wiley W. R., Matchett W. H. Tryptophan transport in Neurospora crassa. I. Specificity and kinetics. J Bacteriol. 1966 Dec;92(6):1698–1705. doi: 10.1128/jb.92.6.1698-1705.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES