Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1970 Jul;103(1):159–165. doi: 10.1128/jb.103.1.159-165.1970

Isolation and Analysis of the Nucleic Acids and Polysaccharides from Clostridium welchii

G K Darby 1, A S Jones 1, J F Kennedy 1, R T Walker 1
PMCID: PMC248052  PMID: 5423367

Abstract

A method previously described for the use of bentonite in the isolation of the nucleic acids from two gram-positive organisms was applied to the isolation of the nucleic acids from two strains of Clostridium welchii. The nucleic acids were separated from polysaccharides by the fractional precipitation of their cetyltrimethyl-ammonium salts from sodium chloride solution, and the base composition of the nucleic acids was determined. One strain of C. welchii investigated (NCTC 10578) was shown to produce considerable quantities of an acidic and also a weakly acidic or neutral polysaccharide; the other strain (ATCC 10543) gave very small quantities of the latter but none of the former polysaccharide. The monosaccharide composition of these polysaccharides was determined and the acidic polysaccharide was shown to resemble dermatan sulfate.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BITTER T., MUIR H. M. A modified uronic acid carbazole reaction. Anal Biochem. 1962 Oct;4:330–334. doi: 10.1016/0003-2697(62)90095-7. [DOI] [PubMed] [Google Scholar]
  2. BONDE G. J., CARLSEN F. E., JENSEN C. E. Production of hyaluronic acid by Pseudomonas aeruginosa. Acta Pharmacol Toxicol (Copenh) 1957;13(2):205–212. doi: 10.1111/j.1600-0773.1957.tb00255.x. [DOI] [PubMed] [Google Scholar]
  3. BROWNHILL T. J., JONES A. S., STACEY M. The inactivation of ribonuclease during the isolation of ribonucleic acids and ribonucleoproteins from yeast. Biochem J. 1959 Nov;73:434–438. doi: 10.1042/bj0730434. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. DAVIDSON E., HOFFMAN P., LINKER A., MEYER K. The acid mucopolysaccharides of connective tissue. Biochim Biophys Acta. 1956 Sep;21(3):506–518. doi: 10.1016/0006-3002(56)90188-3. [DOI] [PubMed] [Google Scholar]
  5. Elson L. A., Morgan W. T. A colorimetric method for the determination of glucosamine and chondrosamine. Biochem J. 1933;27(6):1824–1828. doi: 10.1042/bj0271824. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Izumi K. MUCOPOLYSACCHARIDES PRODUCED BY A STRAIN OF CLOSTRIDIUM PERFRINGENS. J Bacteriol. 1962 May;83(5):956–959. doi: 10.1128/jb.83.5.956-959.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. JONES A. S. USE OF ALKYLTRIMETHYLAMMONIUM BROMIDES FOR THE ISOLATION OF RIBO- AND DESOXYRIBO-NUCLEIC ACIDS. Nature. 1963 Jul 20;199:280–282. doi: 10.1038/199280b0. [DOI] [PubMed] [Google Scholar]
  8. Jones A. S., Walker R. T. The isolation of nucleic acids from gram-positive bacteria. Arch Biochem Biophys. 1968 Dec;128(3):579–582. doi: 10.1016/0003-9861(68)90065-9. [DOI] [PubMed] [Google Scholar]
  9. KIRBY K. S. Some new solvent systems for the paper chromatography of nucleic acid degradation products. Biochim Biophys Acta. 1955 Dec;18(4):575–576. doi: 10.1016/0006-3002(55)90157-8. [DOI] [PubMed] [Google Scholar]
  10. LUDOWIEG J., DORFMAN A. A micromethod for the colorimetric determination of N-acetyl groups in acid mucopolysaccharides. Biochim Biophys Acta. 1960 Feb 26;38:212–218. doi: 10.1016/0006-3002(60)91233-6. [DOI] [PubMed] [Google Scholar]
  11. Lindahl U., Rodén L. The chondroitin 4-sulfate-protein linkage. J Biol Chem. 1966 May 10;241(9):2113–2119. [PubMed] [Google Scholar]
  12. MARKHAM R., SMITH J. D. Chromatographic studies of nucleic acids. 4. The nucleic acid of the turnip yellow mosaic virus including a note on the nucleic acid of the tomato bushy stunt virus. Biochem J. 1951 Sep;49(4):401–406. doi: 10.1042/bj0490401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. MARMUR J., DOTY P. Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol. 1962 Jul;5:109–118. doi: 10.1016/s0022-2836(62)80066-7. [DOI] [PubMed] [Google Scholar]
  14. PIERCE W. A., Jr, WHITE A. G. Hyaluronic acid formation by Streptococcus pyogenes. Proc Soc Exp Biol Med. 1954 Oct;87(1):50–54. doi: 10.3181/00379727-87-21282. [DOI] [PubMed] [Google Scholar]
  15. SCHILDKRAUT C. L., MARMUR J., DOTY P. Determination of the base composition of deoxyribonucleic acid from its buoyant density in CsCl. J Mol Biol. 1962 Jun;4:430–443. doi: 10.1016/s0022-2836(62)80100-4. [DOI] [PubMed] [Google Scholar]
  16. SCOTT J. E. The precipitation of polyanions by long-chain aliphatic ammonium salts. 6. The affinity of substituted ammonium cations for the anionic groups of some biological polymers. Biochem J. 1962 Aug;84:270–275. doi: 10.1042/bj0840270. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. SMITH H. W. The bacteriophages of Clostridium perfringens. J Gen Microbiol. 1959 Dec;21:622–630. doi: 10.1099/00221287-21-3-622. [DOI] [PubMed] [Google Scholar]
  18. SVENNERHOLM L. The determination of hexosamines with special reference to nervous tissue. Acta Soc Med Ups. 1957 Feb 28;61(5-6):287–306. [PubMed] [Google Scholar]
  19. WARREN L. The thiobarbituric acid assay of sialic acids. J Biol Chem. 1959 Aug;234(8):1971–1975. [PubMed] [Google Scholar]
  20. WYATT G. R., COHEN S. S. The bases of the nucleic acids of some bacterial and animal viruses: the occurrence of 5-hydroxymethylcytosine. Biochem J. 1953 Dec;55(5):774–782. doi: 10.1042/bj0550774. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. WYATT G. R. The purine and pyrimidine composition of deoxypentose nucleic acids. Biochem J. 1951 May;48(5):584–590. doi: 10.1042/bj0480584. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Warren G. H. The Isolation of a Mucopolysaccharide from Aerobacter aerogenes. Science. 1950 Apr 28;111(2887):473–474. doi: 10.1126/science.111.2887.473. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES