Abstract
The pathways of carbohydrate metabolism in Spirochaeta stenostrepta, a free-living, strictly anaerobic spirochete, were studied. The organism fermented glucose to ethyl alcohol, acetate, lactate, CO2, and H2. Assays of enzymatic activities in cell extracts, and determinations of radioactivity distribution in products formed from 14C-labeled glucose indicated that S. stenostrepta degraded glucose via the Embden-Meyerhof pathway. The spirochete utilized a clostridial-type clastic reaction to metabolize pyruvate to acetyl-coenzyme A, CO2, and H2, without production of formate. Acetyl-coenzyme A was converted to ethyl alcohol by nicotinamide adenine dinucleotide-dependent acetaldehyde and alcohol dehydrogenase activities. Phosphotransacetylase and acetate kinase catalyzed the formation of acetate from acetyl-coenzyme A. Hydrogenase and lactate dehydrogenase activities were detected in cell extracts. A rubredoxin was isolated from cell extracts of S. stenostrepta. Preparations of this rubredoxin stimulated acetyl phosphate formation from pyruvate by diethylaminoethyl cellulose-treated extracts of S. stenostrepta, an indication that rubredoxin may participate in pyruvate cleavage by this spirochete. Nutritional studies showed that S. stenostrepta fermented a variety of carbohydrates, but did not ferment amino acids or other organic acids. An unidentified growth factor present in yeast extract was required by the organism. Exogenous supplements of biotin, riboflavin, and vitamin B12 were either stimulatory or required for growth.
Full text
PDF










Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BARBAN S. Studies on the metabolism of the Treponemata. I. Amino acid metabolism. J Bacteriol. 1954 Oct;68(4):493–497. doi: 10.1128/jb.68.4.493-497.1954. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bachmayer H., Piette L. H., Yasunobu K. T., Whiteley H. R. The binding sites of iron in rubredoxin from Micrococcus aerogenes. Proc Natl Acad Sci U S A. 1967 Jan;57(1):122–127. doi: 10.1073/pnas.57.1.122. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bachmayer H., Yasunobu K. T., Peel J. L., Mayhew S. Non-heme iron proteins. V. The amino acid sequence of rubredoxin from Peptostreptococcus elsdenii. J Biol Chem. 1968 Mar 10;243(5):1022–1030. [PubMed] [Google Scholar]
- Breznak J. A., Canale-Parola E. Spirochaeta aurantia, a pigmented, facultatively anaerobic spirochete. J Bacteriol. 1969 Jan;97(1):386–395. doi: 10.1128/jb.97.1.386-395.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Canale-Parola E., Holt S. C., Udris Z. Isolation of free-living, anaerobic spirochetes. Arch Mikrobiol. 1967;59(1):41–48. doi: 10.1007/BF00406315. [DOI] [PubMed] [Google Scholar]
- Canale-Parola E., Udris Z., Mandel M. The classification of free-living spirochetes. Arch Mikrobiol. 1968;63(4):385–397. doi: 10.1007/BF00412124. [DOI] [PubMed] [Google Scholar]
- DAWES E. A., FOSTER S. M. The formation of ethanol in Escherichia coli. Biochim Biophys Acta. 1956 Nov;22(2):253–265. doi: 10.1016/0006-3002(56)90148-2. [DOI] [PubMed] [Google Scholar]
- DOLIN M. I., GUNSALUS I. C. Pyruvic acid metabolism. II. An acetoinforming enzyme system in Streptococcus faecalis. J Bacteriol. 1951 Aug;62(2):199–214. doi: 10.1128/jb.62.2.199-214.1951. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FULTON J. D., SMITH P. J. Carbohydrate metabolism in Spirochaeta recurrentis. 1. The metabolism of spirochaetes in vivo and in vitro. Biochem J. 1960 Sep;76:491–499. doi: 10.1042/bj0760491. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HAMILTON R. D., WOLFE R. S. Pyruvate exchange reactions in Bacillus macerans. J Bacteriol. 1959 Aug;78:253–258. doi: 10.1128/jb.78.2.253-258.1959. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Holt S. C., Canale-Parola E. Fine structure of Spirochaeta stenostrepta, a free-living, anaerobic spirochete. J Bacteriol. 1968 Sep;96(3):822–835. doi: 10.1128/jb.96.3.822-835.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kupfer D. G., Canale-Parola E. Pyruvate metabolism in Sarcina maxima. J Bacteriol. 1967 Oct;94(4):984–990. doi: 10.1128/jb.94.4.984-990.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lovenberg W., Sobel B. E. Rubredoxin: a new electron transfer protein from Clostridium pasteurianum. Proc Natl Acad Sci U S A. 1965 Jul;54(1):193–199. doi: 10.1073/pnas.54.1.193. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MORTLOCK R. P., WOLFE R. S. Reversal of pyruvate oxidation in Clostridium butyricum. J Biol Chem. 1959 Jul;234(7):1657–1658. [PubMed] [Google Scholar]
- McCormick N. G., Ordal E. J., Whiteley H. R. DEGRADATION OF PYRUVATE BY MICROCOCCUS LACTILYTICUS I. : General Properties of the Formate-Exchange Reaction. J Bacteriol. 1962 Apr;83(4):887–898. doi: 10.1128/jb.83.4.887-898.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Newman D. J., Postgate J. R. Rubredoxin from a nitrogen-fixing variety of Desulfovibrio desulfuricans. Eur J Biochem. 1968 Dec;7(1):45–50. doi: 10.1111/j.1432-1033.1968.tb19571.x. [DOI] [PubMed] [Google Scholar]
- PECK H. D., Jr, GEST H. A new procedure for assay of bacterial hydrogenases. J Bacteriol. 1956 Jan;71(1):70–80. doi: 10.1128/jb.71.1.70-80.1956. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PHARES E. F. Degradation of labeled propionic and acetic acids. Arch Biochem Biophys. 1951 Sep;33(2):173–178. doi: 10.1016/0003-9861(51)90094-x. [DOI] [PubMed] [Google Scholar]
- ROSE I. A., GRUNBERG-MANAGO M., KOREY S. R., OCHOA S. Enzymatic phosphorylation of acetate. J Biol Chem. 1954 Dec;211(2):737–756. [PubMed] [Google Scholar]
- Rudolph F. B., Purich D. L., Fromm H. J. Coenzyme A-linked aldehyde dehydrogenase from Escherichia coli. I. Partial purification, properties, and kinetic studies of the enzyme. J Biol Chem. 1968 Nov 10;243(21):5539–5545. [PubMed] [Google Scholar]
- STADTMAN E. R., NOVELLI G. D., LIPMANN F. Coenzyme A function in and acetyl transfer by the phosphotransacetylase system. J Biol Chem. 1951 Jul;191(1):365–376. [PubMed] [Google Scholar]
- STRECKER H. J. Formate fixation in pyruvate by Escherichia coli. J Biol Chem. 1951 Apr;189(2):815–830. [PubMed] [Google Scholar]
- Sly L. I., Doelle H. W. 6-phosphogluconate dehydrogenase in cell free extracts of Escherichia coli K-12. Arch Mikrobiol. 1968;63(3):214–223. doi: 10.1007/BF00412837. [DOI] [PubMed] [Google Scholar]
- Sly L. I., Doelle H. W. Glucose-6-phosphate dehydrogenase in cell free extracts of Zymomonas mobilis. Arch Mikrobiol. 1968;63(3):197–213. doi: 10.1007/BF00412836. [DOI] [PubMed] [Google Scholar]
- Smith P. J. Carbohydrate metabolism in Spirochaeta recurrentis. 2. Enzymes associated with disintegrated cells and extracts of spirochaetes. Biochem J. 1960 Sep;76(3):500–508. doi: 10.1042/bj0760500. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Suh B., Akagi J. M. Pyruvate-carbon dioxide exchange reaction of Desulfovibrio desulfuricans. J Bacteriol. 1966 Jun;91(6):2281–2285. doi: 10.1128/jb.91.6.2281-2285.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
- VELDKAMP H. Isolation and characteristics of Treponema zuelzerae nov. spec., and anaerobic, free-living spirochete. Antonie Van Leeuwenhoek. 1960;26:103–125. doi: 10.1007/BF02538999. [DOI] [PubMed] [Google Scholar]
- WHITELEY H. R., McCORMICK N. G. Degradation of pyruvate by Micrococcus lactilyticus. III. Properties and cofactor requirements of the carbon dioxide-exchange reaction. J Bacteriol. 1963 Feb;85:382–393. doi: 10.1128/jb.85.2.382-393.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WOLFE R. S., O'KANE D. J. Cofactors of the carbon dioxide exchange reaction of Clostridium butyricum. J Biol Chem. 1955 Aug;215(2):637–643. [PubMed] [Google Scholar]
- WOLFE R. S., O'KANE D. J. Cofactors of the phosphoroclastic reaction of Clostridium butyricum. J Biol Chem. 1953 Dec;205(2):755–765. [PubMed] [Google Scholar]