Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1970 Aug;103(2):517–519. doi: 10.1128/jb.103.2.517-519.1970

Relationship of Dipicolinic Acid Content in Spores of Bacillus cereus T to Ultraviolet and Gamma Radiation Resistance1

P E Berg a, N Grecz a
PMCID: PMC248113  PMID: 4988248

Abstract

Spores of Bacillus cereus T lacking dipicolinic acid showed a statistically significant reduction in resistance to ultraviolet and γ radiation as compared with spores with high dipicolinic acid content.

Full text

PDF
517

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALDERTON G., THOMPSON P. A., SNELL N. HEAT ADAPTATION AND ION EXCHANGE IN BACILLUS MEGATERIUM SPORES. Science. 1964 Jan 10;143(3602):141–143. doi: 10.1126/science.143.3602.141. [DOI] [PubMed] [Google Scholar]
  2. BLACK S. H., HASHIMOTO T., GERHARDT P. Calcium reversal of the heat susceptibility and dipicolinate deficiency of spores formed "endotrophically" in water. Can J Microbiol. 1960 Apr;6:213–224. doi: 10.1139/m60-023. [DOI] [PubMed] [Google Scholar]
  3. BRAAMS R. Changes in the radiation sensitivity of some enzymes and the possibility of protection against the direct action of ionizing particles. Radiat Res. 1960 Feb;12:113–119. [PubMed] [Google Scholar]
  4. CHURCH B. D., HALVORSON H. Dependence of the heat resistance of bacterial endospores on their dipicolinic acid content. Nature. 1959 Jan 10;183(4654):124–125. doi: 10.1038/183124a0. [DOI] [PubMed] [Google Scholar]
  5. HASHIMOTO T., BLACK S. H., GERHARDT P. Development of fine structure, thermostability, and dipicolinate during sporogenesis in a bacillus. Can J Microbiol. 1960 Apr;6:203–212. doi: 10.1139/m60-022. [DOI] [PubMed] [Google Scholar]
  6. Lewis J. C., Snell N. S., Burr H. K. Water Permeability of Bacterial Spores and the Concept of a Contractile Cortex. Science. 1960 Aug 26;132(3426):544–545. doi: 10.1126/science.132.3426.544. [DOI] [PubMed] [Google Scholar]
  7. NAKATA H. M. EFFECT OF PH ON INTERMEDIATES PRODUCED DURING GROWTH AND SPORULATION OF BACILLUS CEREUS. J Bacteriol. 1963 Sep;86:577–581. doi: 10.1128/jb.86.3.577-581.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. ROWLEY D. B., NEWCOMB H. R. RADIOSENSITIVITY OF SEVERAL DEHYDROGENASES AND TRANSAMINASES DURING SPOROGENESIS OF BACILLUS SUBTILIS. J Bacteriol. 1964 Mar;87:701–709. doi: 10.1128/jb.87.3.701-709.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Rotman Y., Fields M. L. A modified reagent for dipicolinic acid analysis. Anal Biochem. 1968 Jan;22(1):168–168. doi: 10.1016/0003-2697(68)90272-8. [DOI] [PubMed] [Google Scholar]
  10. Tang T., Rajan K. S., Grecz N. Mixed chelates of Ca(II)-pyridine-2,6-dicarboxylate with some amino acids related to bacterial spores. Biophys J. 1968 Dec;8(12):1458–1474. doi: 10.1016/S0006-3495(68)86566-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. VINTER V. Changes in radioresistance of sporulating cells of Bacillus cereus. Nature. 1961 Feb 18;189:589–590. doi: 10.1038/189589a0. [DOI] [PubMed] [Google Scholar]
  12. VINTER V. Spores of microorganisms. IX. Gradual development of the resistant structure of bacterial endospores. Folia Microbiol (Praha) 1962 Mar;7:115–120. doi: 10.1007/BF02927234. [DOI] [PubMed] [Google Scholar]
  13. VINTER V., VECHET B. SPORS OF MICROORGANISMS. XV. THE ALTERATION OF HEAT SENSITIVITY AND ITS RELATION TO RADIATION RESISTANCE OF BACTERIAL SPORES. Folia Microbiol (Praha) 1964 Jul;35:238–248. doi: 10.1007/BF02875843. [DOI] [PubMed] [Google Scholar]
  14. Wise J., Swanson A., Halvorson H. O. Dipicolinic acid-less mutants of Bacillus cereus. J Bacteriol. 1967 Dec;94(6):2075–2076. doi: 10.1128/jb.94.6.2075-2076.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES