Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1970 Sep;103(3):671–678. doi: 10.1128/jb.103.3.671-678.1970

Galactose Transport in Saccharomyces cerevisiae II. Characteristics of Galactose Uptake and Exchange in Galactokinaseless Cells

Shou-Chang Kou a,1, Michael S Christensen a, Vincent P Cirillo a,2
PMCID: PMC248142  PMID: 5474882

Abstract

The characteristics of the inducible galactose system in Saccharomyces cerevisiae were studied by using the nonmetabolized galactose analogues, l-arabinose and d-fucose, and galactokinaseless and transportless mutants. Induced wild-type cells transport l-arabinose by facilitated diffusion. Transportless cells transport neither galactose nor l-arabinose above the noninduced rate, whereas galactokinaseless cells transport galactose l-arabinose and d-fucose by facilitated diffusion. Determination of unidirectional rate of 14C-labeled galactose uptake by preloaded galactokinaseless cells, containing a large unlabeled free-galactose pool, showed that the rate of galactose uptake by facilitated diffusion is greater than the rate of galactose metabolism at similar external galactose concentrations.

Full text

PDF
671

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BRITTEN R. J., McCLURE F. T. The amino acid pool in Escherichia coli. Bacteriol Rev. 1962 Sep;26:292–335. doi: 10.1128/br.26.3.292-335.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BURGER M., HEJMOVA L., KLEINZELLER A. Transport of some mono- and di-saccharides into yeast cells. Biochem J. 1959 Feb;71(2):233–242. doi: 10.1042/bj0710233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. CIRILLO V. P. Mechanism of glucose transport across the yeast cell membrane. J Bacteriol. 1962 Sep;84:485–491. doi: 10.1128/jb.84.3.485-491.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. CIRILLO V. P. Sugar transport by Saccharomyces cerevisiae protoplasts. J Bacteriol. 1962 Dec;84:1251–1253. doi: 10.1128/jb.84.6.1251-1253.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. CIRILLO V. P., WILKINS P. O. USE OF URANYL ION IN MEMBRANE TRANSPORT STUDIES. J Bacteriol. 1964 Jan;87:232–233. doi: 10.1128/jb.87.1.232-233.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cirillo V. P. Galactose transport in Saccharomyces cerevisiae. I. Nonmetabolized sugars as substrates and inducers of the galactose transport system. J Bacteriol. 1968 May;95(5):1727–1731. doi: 10.1128/jb.95.5.1727-1731.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cirillo V. P. Relationship between sugar structure and competition for the sugar transport system in Bakers' yeast. J Bacteriol. 1968 Feb;95(2):603–611. doi: 10.1128/jb.95.2.603-611.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. DEMIS D. J., ROTHSTEIN A., MEIER R. The relationship of the cell surface to metabolism. X. The location and function of invertase in the yeast cell. Arch Biochem Biophys. 1954 Jan;48(1):55–62. doi: 10.1016/0003-9861(54)90305-7. [DOI] [PubMed] [Google Scholar]
  9. DOUGLAS H. C., CONDIE F. The genetic control of galactose utilization in Saccharomyces. J Bacteriol. 1954 Dec;68(6):662–670. doi: 10.1128/jb.68.6.662-670.1954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. DOUGLAS H. C., HAWTHORNE D. C. ENZYMATIC EXPRESSION AND GENETIC LINKAGE OF GENES CONTROLLING GALACTOSE UTILIZATION IN SACCHAROMYCES. Genetics. 1964 May;49:837–844. doi: 10.1093/genetics/49.5.837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. HOROWITZ E. B. A sensitive assay for galactokinase in Escherichia coli. Anal Biochem. 1962 Jun;3:498–513. doi: 10.1016/0003-2697(62)90083-0. [DOI] [PubMed] [Google Scholar]
  12. KOTYK A., KLEINZELLER A. Transport of D-xylose and sugar space in Baker's yeast. Folia Microbiol (Praha) 1963 May;8:156–164. doi: 10.1007/BF02894974. [DOI] [PubMed] [Google Scholar]
  13. Kotyk A., Haskovec C. Properties of the sugar carrier in Baker's yeast. 3. Induction of the galactose carrier. Folia Microbiol (Praha) 1968;13(1):12–19. doi: 10.1007/BF02866856. [DOI] [PubMed] [Google Scholar]
  14. Kuo S. C., Cirillo V. P. Galactose transport in Saccharomyces cerevisiae. 3. Characteristics of galactose uptake in transferaseless cells: evidence against transport-associated phosphorylation. J Bacteriol. 1970 Sep;103(3):679–685. doi: 10.1128/jb.103.3.679-685.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. LACKO L., BURGER M. Interaction of some disaccharides with the carrier system for aldoses in erythrocytes. Biochem J. 1962 Jun;83:622–625. doi: 10.1042/bj0830622. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. PALADINI A. C., LELOIR L. F. Studies on uridine-diphosphate-glucose. Biochem J. 1952 Jun;51(3):426–430. doi: 10.1042/bj0510426. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Spoerl E., Doyle R. J. Inhibition by methylphenidate of transport across the yeast cell membrane. J Bacteriol. 1968 Sep;96(3):744–750. doi: 10.1128/jb.96.3.744-750.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Winkler H. H., Wilson T. H. The role of energy coupling in the transport of beta-galactosides by Escherichia coli. J Biol Chem. 1966 May 25;241(10):2200–2211. [PubMed] [Google Scholar]
  19. van Steveninck J. Competition of sugars for the hexose transport system in yeast. Biochim Biophys Acta. 1968 Apr 29;150(3):424–434. doi: 10.1016/0005-2736(68)90141-7. [DOI] [PubMed] [Google Scholar]
  20. van Steveninck J., Dawson E. C. Active and passive galactose transport in yeast. Biochim Biophys Acta. 1968 Jan 3;150(1):47–55. doi: 10.1016/0005-2736(68)90007-2. [DOI] [PubMed] [Google Scholar]
  21. van Steveninck J. The mechanism of transmembrane glucose transport in yeast: evidence for phosphorylation, associated with transport. Arch Biochem Biophys. 1969 Mar;130(1):244–252. doi: 10.1016/0003-9861(69)90030-7. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES