Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1970 Sep;103(3):741–744. doi: 10.1128/jb.103.3.741-744.1970

Role of Thiosulfate in Bisulfite Reduction as Catalyzed by Desulfovibrio vulgaris

John E Findley 1, J M Akagi 1
PMCID: PMC248152  PMID: 5474884

Abstract

Studies with 35S-labeled substrates were conducted to investigate the pathway involved in the reduction of sulfite to sulfide by cell-free extracts of the sulfate-reducing organism Desulfovibrio vulgaris. The results showed that accumulation of thiosulfate occurred when crude extracts were incubated under appropriate conditions with sulfite as substrate. With labeled sulfite as substrate, thiosulfate with equal distribution of radioactivity in both sulfur atoms was formed. When the rates of formation of 35S2− from inner- and outer-labeled thiosulfate were compared, the rate of formation from outer-labeled thiosulfate was greater. Time studies with S-35SO32− showed an increase of 35S2− with time and an increasing ratio of doubly labeled to inner labeled thiosulfate remaining in the reaction mixture. From these studies it is concluded that thiosulfate is a stable intermediate formed from sulfite during the reduction of sulfate by D. vulgaris. Both sulfur atoms are derived from sulfite; during the utilization of thiosulfate, the outer sulfur is reduced to sulfide and the inner sulfur recycles through a sulfite pool.

Full text

PDF
741

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akagi J. M., Campbell L. L. STUDIES ON THERMOPHILIC SULFATE-REDUCING BACTERIA III. : Adenosine Triphosphate-sulfurylase of Clostridium nigrificans and Desulfovibrio desulfuricans. J Bacteriol. 1962 Dec;84(6):1194–1201. doi: 10.1128/jb.84.6.1194-1201.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Findley J. E., Akagi J. M. Evidence for thiosulfate formation during sulfite reduction by Desulfovibrio vulgaris. Biochem Biophys Res Commun. 1969 Jul 23;36(2):266–271. doi: 10.1016/0006-291x(69)90324-6. [DOI] [PubMed] [Google Scholar]
  3. Kobayashi K., Tachibana S., Ishimoto M. Intermediary formation of trithionate in sulfite reduction by a sulfate-reducing bacterium. J Biochem. 1969 Jan;65(1):155–157. [PubMed] [Google Scholar]
  4. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  5. PECK H. D., Jr Evidence for the reversibility of the reaction catalyzed by adenosine 5'-phosphosulfate reductase. Biochim Biophys Acta. 1961 May 27;49:621–624. doi: 10.1016/0006-3002(61)90273-6. [DOI] [PubMed] [Google Scholar]
  6. Peck H. D. THE ATP-DEPENDENT REDUCTION OF SULFATE WITH HYDROGEN IN EXTRACTS OF DESULFOVIBRIO DESULFURICANS. Proc Natl Acad Sci U S A. 1959 May;45(5):701–708. doi: 10.1073/pnas.45.5.701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. SORBO B. A colorimetric method for the determination of thiosulfate. Biochim Biophys Acta. 1957 Feb;23(2):412–416. doi: 10.1016/0006-3002(57)90346-3. [DOI] [PubMed] [Google Scholar]
  8. Suh B., Akagi J. M. Formation of thiosulfate from sulfite by Desulfovibrio vulgaris. J Bacteriol. 1969 Jul;99(1):210–215. doi: 10.1128/jb.99.1.210-215.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES