Abstract
Inducible synthesis of extracellular pectate lyase occurs in Erwinia carotovora, a bacterial soft-rot pathogen of plants, and, to a lesser extent, in a nonpathogenic isolate of Pseudomonas fluorescens. A combination of pectin and a heat-labile factor in fresh potato tissue or acetone powders of the tissue provided the best carbon source for induction. Yields of inducible pectate lyase were much greater than those usually reported. The pathogen, but not the saprophyte, produced a small amount of constitutive enzyme when grown on glucose. The relatively low level or absence of constitutive synthesis in these bacteria did not result from catabolite repression. Attempts were made to relieve any existing catabolite repression by restricting growth through slow feeding of glucose or by growing the organisms on glycerol. These conditions did not significantly alter the differential rate of lyase synthesis compared with changes observed in the presence of inducers. Previous growth history did not affect induction in the pathogen. However, P. fluorescens previously cultured on glucose required 10 to 20 generations of growth on inducing medium before appreciable lyase synthesis occurred. Differences between the pathogen and nonpathogen suggest that regulation of pectate lyase synthesis is related to pathogenicity of soft-rot bacteria.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ALBERSHEIM P., KILLIAS U. Studies relating to the purification and properties of pectin transeliminase. Arch Biochem Biophys. 1962 Apr;97:107–115. doi: 10.1016/0003-9861(62)90050-4. [DOI] [PubMed] [Google Scholar]
- Dean M., Wood R. K. Cell wall degradation by a pectate transeliminase. Nature. 1967 Apr 22;214(5086):408–410. doi: 10.1038/214408a0. [DOI] [PubMed] [Google Scholar]
- English P. D., Albersheim P. Host-Pathogen Interactions: I. A Correlation Between alpha-Galactosidase Production and Virulence. Plant Physiol. 1969 Feb;44(2):217–224. doi: 10.1104/pp.44.2.217. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FRIEDMAN B. A., CEPONIS M. J. Effect of ultraviolet light on pectolytic enzyme production and pathogenicity of Pseudomonas. Science. 1959 Mar 13;129(3350):720–721. doi: 10.1126/science.129.3350.720-a. [DOI] [PubMed] [Google Scholar]
- Fuchs A. The trans-eliminative breakdown of Na-polygalacturonate by Pseudomonas fluorescens. Antonie Van Leeuwenhoek. 1965;31(3):323–340. doi: 10.1007/BF02045912. [DOI] [PubMed] [Google Scholar]
- Hsu E. J., Vaughn R. H. Production and catabolite repression of the constitutive polygalacturonic acid trans-eliminase of Aeromonas liquefaciens. J Bacteriol. 1969 Apr;98(1):172–181. doi: 10.1128/jb.98.1.172-181.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lovrekovich L., Lovrekovich H., Stahmann M. A. Inhibition of phenol oxidation by Erwinia carotovora in potato tuber tissue and its significance in disease resistance. Phytopathology. 1967 Jul;57(7):737–742. [PubMed] [Google Scholar]
- MACMILLAN J. D., VAUGHN R. H. PURIFICATION AND PROPERTIES OF A POLYGALACTURONIC ACID-TRANS-ELIMINASE PRODUCED BY CLOSTRIDIUM MULTIFERMENTANS. Biochemistry. 1964 Apr;3:564–572. doi: 10.1021/bi00892a016. [DOI] [PubMed] [Google Scholar]
- MONOD J., PAPPENHEIMER A. M., Jr, COHEN-BAZIRE G. La cinétique de la biosynthèse de la beta-galactosidase chez E. coli considérée comme fonction de la croissance. Biochim Biophys Acta. 1952 Dec;9(6):648–660. doi: 10.1016/0006-3002(52)90227-8. [DOI] [PubMed] [Google Scholar]
- Moran F., Nasuno S., Starr M. P. Extracellular and intracellular polygllacturonic acid trans-eliminases of Erwinia carotovora. Arch Biochem Biophys. 1968 Feb;123(2):298–306. doi: 10.1016/0003-9861(68)90138-0. [DOI] [PubMed] [Google Scholar]
- Moran F., Starr M. P. Metabolic regulation of polygalacturonic acid trans-eliminase in Erwinia. Eur J Biochem. 1969 Dec;11(2):291–295. doi: 10.1111/j.1432-1033.1969.tb00772.x. [DOI] [PubMed] [Google Scholar]
- NAGEL C. W., VAUGHN R. H. Comparison of growth and pectolytic enzyme production by Bacillus polymyxa. J Bacteriol. 1962 Jan;83:1–5. doi: 10.1128/jb.83.1.1-5.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nasuno S., Starr M. P. Pectic enzymes of pseudomonas marginalis. Phytopathology. 1966 Dec;56(12):1414–1415. [PubMed] [Google Scholar]
- Nasuno S., Starr M. P. Polygalacturonic acid trans-eliminase of Xanthomonas campestris. Biochem J. 1967 Jul;104(1):178–185. doi: 10.1042/bj1040178. [DOI] [PMC free article] [PubMed] [Google Scholar]
- STARR M. P., MORAN F. Eliminative split of pectic substances by phytopathogenic soft-rot bacteria. Science. 1962 Mar 16;135(3507):920–921. doi: 10.1126/science.135.3507.920. [DOI] [PubMed] [Google Scholar]
- Yudkin M. D. Transient repression of beta-galactosidase synthesis: effect of growth history. Biochim Biophys Acta. 1969 Sep 17;190(1):220–221. doi: 10.1016/0005-2787(69)90173-7. [DOI] [PubMed] [Google Scholar]
