Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1970 Oct;104(1):90–97. doi: 10.1128/jb.104.1.90-97.1970

Regulation of Tryptophan Pyrrolase Activity in Xanthomonas pruni1

Conrad Wagner a, Albert T Brown a,2
PMCID: PMC248187  PMID: 4248693

Abstract

Tryptophan pyrrolase was studied in partially purified extracts of Xanthomonas pruni. The dialyzed enzyme required both heme and ascorbate for maximal activity. Other reducing agents were able to substitute for ascorbate. Protoporphyrin competed with heme for the enzyme, suggesting that the native enzyme is a hemoprotein. The enzyme exhibited sigmoid saturation kinetics. Reduced nicotinamide adenine dinucleotide (NADH), reduced nicotinamide adenine dinucleotide phosphate (NADPH), nicotinic acid mononucleotide, and anthranilic acid enhanced the sigmoid kinetics and presumably bound to allosteric sites on the enzyme. The sigmoid kinetics were diminished in the presence of α-methyltryptophan. NAD, NADP, nicotinic acid, nicotinamide, nicotinamide mononucleotide, and several other related compounds were without effect on the activity of the enzyme. These data indicate that the activity of the enzyme is under feedback regulation by the ultimate end products of the pathway leading to NAD biosynthesis, as well as by certain intermediates of this pathway.

Full text

PDF
90

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmad F., Moat A. G. Nicotinic acid biosynthesis in prototrophs and tryptophan auxotrophs of Saccharomyces cerevisiae. J Biol Chem. 1966 Feb 25;241(4):775–780. [PubMed] [Google Scholar]
  2. Beadle G. W., Mitchell H. K., Nyc J. F. Kynurenine as an Intermediate in the Formation of Nicotinic Acid from Tryptophane by Neurospora. Proc Natl Acad Sci U S A. 1947 Jun;33(6):155–158. doi: 10.1073/pnas.33.6.155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brown A. T., Wagner C. Regulation of enzymes involved in the conversion of tryptophan to nicotinamide adenine dinucleotide in a colorless strain of Xanthomonas pruni. J Bacteriol. 1970 Feb;101(2):456–463. doi: 10.1128/jb.101.2.456-463.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cho-Chung Y. S., Pitot H. C. Feedback control of rat liver tryptophan pyrrolase. I. End product inhibition of trytophan pyrrolase activity. J Biol Chem. 1967 Mar 25;242(6):1192–1198. [PubMed] [Google Scholar]
  5. Cohen G. N. Regulation of enzyme activity in microorganisms. Annu Rev Microbiol. 1965;19:105–126. doi: 10.1146/annurev.mi.19.100165.000541. [DOI] [PubMed] [Google Scholar]
  6. DAVIS D., HENDERSON L. M., POWELL D. The niacin-tryptophan relationship in the metabolism of Xanthomonas pruni. J Biol Chem. 1951 Apr;189(2):543–549. [PubMed] [Google Scholar]
  7. Feigelson P., Maeno H. Studies on enzyme-substrate interactions in the regulation of tryptophan oxygenase activity. Biochem Biophys Res Commun. 1967 Jul 21;28(2):289–293. doi: 10.1016/0006-291x(67)90443-3. [DOI] [PubMed] [Google Scholar]
  8. Frieden C. Treatment of enzyme kinetic data. II. The multisite case: comparison of allosteric models and a possible new mechanism. J Biol Chem. 1967 Sep 25;242(18):4045–4052. [PubMed] [Google Scholar]
  9. LONGENECKER J. B., SNELL E. E. A possible mechanism for kynureninase action. J Biol Chem. 1955 Mar;213(1):229–235. [PubMed] [Google Scholar]
  10. Lingens F., Vollprecht P. Zur Biosynthese der Nicotinsäure in Streptomyceten, Algen, Phycomyceten und Hefe. Hoppe Seylers Z Physiol Chem. 1964;339(1):64–74. [PubMed] [Google Scholar]
  11. Maeno H., Feigelson P. Spectral studies on the catalytic mechanism and activation of Pseudomonas tryptophan oxygenase (tryptophan pyrrolase). J Biol Chem. 1967 Feb 25;242(4):596–601. [PubMed] [Google Scholar]
  12. Starr M. P. Nutrition of Phytopathogenic Bacteria: I. Minimal Nutritive Requirements of Genus Xanthomonas. J Bacteriol. 1946 Feb;51(2):131–143. [PMC free article] [PubMed] [Google Scholar]
  13. Tokuyama K. Further studies on bacterial and liver tryptophan pyrrolases. Biochim Biophys Acta. 1968 Jan 8;151(1):76–87. doi: 10.1016/0005-2744(68)90163-0. [DOI] [PubMed] [Google Scholar]
  14. Tremblay G. C., Gottlieb J. A., Knox W. E. Induction by L-tryptophan and an analogue, alpha-methyl-DL-tryptophan, of the enzymes catabolizing L-tryptophan in Pseudomonas. J Bacteriol. 1967 Jan;93(1):168–176. doi: 10.1128/jb.93.1.168-176.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. WILSON R. G., HENDERSON L. M. Tryptophan-niacin relationship in Xanthomonas pruni. J Bacteriol. 1963 Jan;85:221–229. doi: 10.1128/jb.85.1.221-229.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Wagner C. A simple method for the synthesis of nicotinic acid mononucleotide. Anal Biochem. 1968 Oct 24;25(1):472–476. doi: 10.1016/0003-2697(68)90125-5. [DOI] [PubMed] [Google Scholar]
  17. YANOFSKY C. The absence of a tryptophan-niacin relationship in Escherichia coli and Bacillus subtilis. J Bacteriol. 1954 Nov;68(5):577–584. doi: 10.1128/jb.68.5.577-584.1954. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES