Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1970 Oct;104(1):145–151. doi: 10.1128/jb.104.1.145-151.1970

Energy Generation and Utilization in Hydrogen Bacteria

L Bongers 1
PMCID: PMC248194  PMID: 4990759

Abstract

Studies on the relationship between cell synthesis and energy utilization in Hydrogenomonas eutropha have shown that the amount of oxidative energy required for synthetic reactions depends on the conditions of growth. The energy of hydrogen oxidation was most efficiently used when growth conditions were optimal (continuous culture, cells in exponential growth phase) and when the rate of growth was limited by H2 or O2 supply. Under these conditions, 2 to 2.5 atoms of oxygen were consumed by the oxyhydrogen reaction for the concomitant conversion of 1 mole of CO2 to cell matter. This conversion efficiency, expressed as the O/C energyyield value, was observed with continuous cultures. A less efficient conversion was found with batch cultures. With limiting concentrations of CO2 the rate of hydrogen oxidation was relatively high, and the O/C value was dependent on the growth rate. With nonlimiting concentrations of CO2, the rate of hydrogen oxidation was strictly proportional to the rate of CO2 fixation, and the O/C value was independent of growth rate. This proportionality between the rate of H2 oxidation and the rate of CO2 fixation suggested that energy supply regulates the (maximum) rate of growth. From the energy-yield measurements, we concluded that the oxidation of 1 mole of H2 yields the equivalent of 2 moles of adenosine triphosphate for H. eutropha, and that at least 5 moles of this high-energy phosphate is required for the conversion of 1 mole of CO2 into cellular constituents.

Full text

PDF
145

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BAUCHOP T., ELSDEN S. R. The growth of micro-organisms in relation to their energy supply. J Gen Microbiol. 1960 Dec;23:457–469. doi: 10.1099/00221287-23-3-457. [DOI] [PubMed] [Google Scholar]
  2. BERGMANN F. H., TOWNE J. C., BURRIS R. H. Assimilation of carbon dioxide by hydrogen bacteria. J Biol Chem. 1958 Jan;230(1):13–24. [PubMed] [Google Scholar]
  3. Baschnagel-DePamphilis, Hanson R. S. Relationship between glucose utilization and growth rate in Bacillus subtilis. J Bacteriol. 1969 Apr;98(1):222–225. doi: 10.1128/jb.98.1.222-225.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bongers L. Phosphorylation in hydrogen bacteria. J Bacteriol. 1967 May;93(5):1615–1623. doi: 10.1128/jb.93.5.1615-1623.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bongers L. Yields of Hydrogenomonas eutropha from growth on succinate and fumarate. J Bacteriol. 1970 May;102(2):598–599. doi: 10.1128/jb.102.2.598-599.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Campbell A. E., Hellebust J. A., Watson S. W. Reductive pentose phosphate cycle in Nitrosocystis oceanus. J Bacteriol. 1966 Mar;91(3):1178–1185. doi: 10.1128/jb.91.3.1178-1185.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. HIRSCH P. CO2-FIXIERUNG DURCH KNALLGASBAKTERIEN. II. CHROMATOGRAPHISCHER NACHWEIS DER FRUEHZEITIGEN FIXIERUNGSPRODUKTE. Arch Mikrobiol. 1963 Jul 18;46:53–78. [PubMed] [Google Scholar]
  8. HIRSCH P., GEORGIEV G., SCHLEGEL H. G. CO2-FIXIERUNG DURCH KNALLGASBAKTERIEN. III. AUTOTROPHE UND ORGANOTROPHE CO2-FIXIERUNG. Arch Mikrobiol. 1963 Jul 18;46:79–95. [PubMed] [Google Scholar]
  9. HIRSCH P., SCHLEGEL H. G. CO2-FIXIERUNG DURCH KNALLGASBAKTERIEN. I. EINBAU UND FRAKTIONIERUNG. Arch Mikrobiol. 1963 Jul 18;46:44–52. [PubMed] [Google Scholar]
  10. HOBSON P. N. CONTINUOUS CULTURE OF SOME ANEROBIC AND FACULTATIVELY ANAEROBIC RUMEN BACTERIA. J Gen Microbiol. 1965 Feb;38:167–180. doi: 10.1099/00221287-38-2-167. [DOI] [PubMed] [Google Scholar]
  11. HOFMAN R., LEES H. The biochemistry of the nitrifying organisms. II. The free-energy efficiency of Nitrosomonas. Biochem J. 1952 Sep;52(1):140–142. doi: 10.1042/bj0520140. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hempfling W. P., Vishniac W. Yield coefficients of Thiobacillus neapolitanus in continuous culture. J Bacteriol. 1967 Mar;93(3):874–878. doi: 10.1128/jb.93.3.874-878.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hernandez E., Johnson M. J. Energy supply and cell yield in aerobically growth microorganisms. J Bacteriol. 1967 Oct;94(4):996–1001. doi: 10.1128/jb.94.4.996-1001.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kuehn G. D., McFadden B. A. Factors affecting the synthesis and degradation of ribulose-1,5-diphosphate carboxylase in Hydrogenomonas facilis and Hydrogenomonas eutropha. J Bacteriol. 1968 Mar;95(3):937–946. doi: 10.1128/jb.95.3.937-946.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. LENHOFF H. M., NICHOLAS D. J., KAPLAN N. O. Effects of oxygen, iron, and molybdenum on routes of electron transfer in Pseudomonas fluorescens. J Biol Chem. 1956 Jun;220(2):983–995. [PubMed] [Google Scholar]
  16. MARINO R. J., CLIFTON C. E. Oxidative assimilation in suspensions and cultures of Hydrogenomonas facilis. J Bacteriol. 1955 Feb;69(2):188–192. doi: 10.1128/jb.69.2.188-192.1955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Mayberry W. R., Prochazka G. J., Payne W. J. Factors derived from studies of aerobic growth in minimal media. J Bacteriol. 1968 Oct;96(4):1424–1426. doi: 10.1128/jb.96.4.1424-1426.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Moustafa H. H., Collins E. B. Molar growth yield of Streptococcus faecalis on pyruvate. J Bacteriol. 1969 Mar;97(3):1496–1497. doi: 10.1128/jb.97.3.1496-1497.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ng H. Effect of decreasing growth temperature on cell yield of Escherichia coli. J Bacteriol. 1969 Apr;98(1):232–237. doi: 10.1128/jb.98.1.232-237.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. PACKER L. Respiratory carriers involved in the oxidation of hydrogen and lactate in a facultative autotroph. Arch Biochem Biophys. 1958 Nov;78(1):54–65. doi: 10.1016/0003-9861(58)90314-x. [DOI] [PubMed] [Google Scholar]
  21. PACKER L., VISHNIAC W. Chemosynthetic fixation of carbon dioxide and characteristics of hydrogenase in resting cell suspensions of Hydrogenomonas ruhlandii nov. spec. J Bacteriol. 1955 Aug;70(2):216–223. doi: 10.1128/jb.70.2.216-223.1955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. PACKER L., VISHNIAC W. The specificity of a diphosphopyridine nucleotide-linked hydrogenase. Biochim Biophys Acta. 1955 May;17(1):153–154. doi: 10.1016/0006-3002(55)90339-5. [DOI] [PubMed] [Google Scholar]
  23. PECK H. D., GEST H. Enzymic reduction of pyridine nucleotides by molecular hydrogen. Biochim Biophys Acta. 1954 Dec;15(4):587–588. doi: 10.1016/0006-3002(54)90021-9. [DOI] [PubMed] [Google Scholar]
  24. Pirt S. J. The maintenance energy of bacteria in growing cultures. Proc R Soc Lond B Biol Sci. 1965 Oct 12;163(991):224–231. doi: 10.1098/rspb.1965.0069. [DOI] [PubMed] [Google Scholar]
  25. REPASKE R. The electron transport system of Hydrogenomonas eutropha. I. Diphosphopyridine nucleotide reduction by hydrogen. J Biol Chem. 1962 Apr;237:1351–1355. [PubMed] [Google Scholar]
  26. SCHLEGEL H. G., GOTTSCHALK G., VON BARTHA R. Formation and utilization of poly-beta-hydroxybutyric acid by Knallgas bacteria (Hydrogenomonas). Nature. 1961 Jul 29;191:463–465. doi: 10.1038/191463a0. [DOI] [PubMed] [Google Scholar]
  27. SCHLEGEL H. G., von BARTHA [Inhibition analytical experiments on the recoupling effect in Hydrogenomonas]. Z Naturforsch B. 1961 Dec;16B:777–780. [PubMed] [Google Scholar]
  28. Schuster E., Schlegel H. G. Chemolithotrophes Wachstum von Hydrogenomonas H16 im Chemostaten mit elektrolytischer Knallgaserzeugung. Arch Mikrobiol. 1967;58(4):380–409. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES