Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1970 Oct;104(1):473–481. doi: 10.1128/jb.104.1.473-481.1970

Respiratory Metabolism of a “Petite Negative” Yeast Schizosaccharomyces pombe 972h1

H Heslot 1,2, A Goffeau 1,2, C Louis 1,2
PMCID: PMC248232  PMID: 4394400

Abstract

The respiratory metabolism of Schizosaccharomyces pombe 972h, a fission, haplontic, “petite negative” yeast, was studied. Glucose and glycerol are good growth substrates and are oxidized under appropriate conditions. l-Lactate, ethanol, malate, and succinate are oxidized but are poor substrates for growth. d-Lactate and pyruvate are neither oxidized nor used for growth. Limited growth was observed under anaerobic conditions. The addition of 0.3% KNO3 to a rich medium relieves the oxygen requirement. A continuous increase of cell respiration during growth on repressive concentration of glucose was observed, suggesting the presence of glucose repression of respiration. Reduced nicotinamide adenine dinucleotide (NADH), succinate, α-glycerophosphate, and ascorbate plus tetramethyl-p-phenylenediamine are oxidized by a mitochondrial fraction. NADH and succinate oxidations are inhibited by antimycin A and NaCN but not by rotenone, suggesting the absence of the phosphorylation site I and the presence of sites II and III. The effects of several mitochondrial inhibitors on growth and respiration indicate that the requirement of an oxidant for growth is related neither to the functioning of the respiratory electron transport chain nor to the formation of respiratory energy. The previously suggested correlations between the nonviability of vegetative “petites” mutants, the absence of repression of respiration by glucose, and the incapacity to grow under anaerobic conditions are thus not strictly valid for S. pombe.

Full text

PDF
473

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BULDER C. J. INDUCTION OF PETITE MUTATION AND INHIBITION OF SYNTHESIS OF RESPIRATORY ENZYMES IN VARIOUS YEASTS. Antonie Van Leeuwenhoek. 1964;30:1–9. doi: 10.1007/BF02046695. [DOI] [PubMed] [Google Scholar]
  2. BULDER C. J. LETHALITY OF THE PETITE MUTATION IN PETITE NEGATIVE YEASTS. Antonie Van Leeuwenhoek. 1964;30:442–454. doi: 10.1007/BF02046758. [DOI] [PubMed] [Google Scholar]
  3. Balcavage W. X., Mattoon J. R. Properties of Saccharomyces cerevisiae mitochondria prepared by a mechanical method. Biochim Biophys Acta. 1968 Apr 2;153(3):521–530. doi: 10.1016/0005-2728(68)90182-5. [DOI] [PubMed] [Google Scholar]
  4. De Deken R. H. The Crabtree effect: a regulatory system in yeast. J Gen Microbiol. 1966 Aug;44(2):149–156. doi: 10.1099/00221287-44-2-149. [DOI] [PubMed] [Google Scholar]
  5. Heslot H., Louis C., Goffeau A. Segregational respiratory-deficient mutants of a "petite negative" yeast Schizosaccharomyces pombe 972h-. J Bacteriol. 1970 Oct;104(1):482–491. doi: 10.1128/jb.104.1.482-491.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Horn P., Wilkie D. Selective advantage of the cytoplasmic respiratory mutant of Saccharomyces cerevisiae in a cobalt medium. Heredity (Edinb) 1966 Nov;21(4):625–635. doi: 10.1038/hdy.1966.62. [DOI] [PubMed] [Google Scholar]
  7. MAYER K., TEMPERLI A. THE METABOLISM OF L-MALATE AND OTHER COMPOUNDS BY SCHIZOSACCHAROMYCES POMBE. Arch Mikrobiol. 1963 Sep 16;46:320–328. [PubMed] [Google Scholar]
  8. Mattoon J. R., Sherman F. Reconstitution of phosphorylating electron transport in mitochondria from a cytochrome c-deficient yeast mutant. J Biol Chem. 1966 Oct 10;241(19):4330–4338. [PubMed] [Google Scholar]
  9. McClary D. O., Bowers W. D., Jr Mitochondrial changes accompanying acriflavine-induced petite mutation in Saccharomyces fragilis. J Ultrastruct Res. 1968 Oct;25(1):37–45. doi: 10.1016/s0022-5320(68)80058-9. [DOI] [PubMed] [Google Scholar]
  10. OHANIANCE L., CHAIX P. APTITUDES RESPIRATOIRES ET SPECTRES CYTOCHROMIQUES DES LEVURES AU COURS DE LEUR CROISSANCE A'EROBIE. Biochim Biophys Acta. 1964 Aug 19;90:221–227. [PubMed] [Google Scholar]
  11. Ohnishi T., Kawaguchi K., Hagihara B. Preparation and some properties of yeast mitochondria. J Biol Chem. 1966 Apr 25;241(8):1797–1806. [PubMed] [Google Scholar]
  12. Ohnishi T., Sottocasa G., Ernster L. Current approaches to the mechanism of energy-coupling in the respiratory chain. Studies with yeast mitochondria. Bull Soc Chim Biol (Paris) 1966;48(11):1189–1203. [PubMed] [Google Scholar]
  13. Polakis E. S., Bartley W., Meek G. A. Changes in the structure and enzyme activity of Saccharomyces cerevisiae in response to changes in the environment. Biochem J. 1964 Feb;90(2):369–374. doi: 10.1042/bj0900369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. RAABO E., TERKILDSEN T. C. On the enzymatic determination of blood glucose. Scand J Clin Lab Invest. 1960;12(4):402–407. doi: 10.3109/00365516009065404. [DOI] [PubMed] [Google Scholar]
  15. SELS A. A., FUKUHARA H., PERE G., SLONIMSKI P. P. CIN'ETIQUE DE LA BIOSYNTH'ESE INDUITE DE L'ISO-1-CYTOCHROME C ET DE L'ISO-2-CYTOCHROME C AU COURS DE L'ADAPTATION 'A L'OXYG'ENE. Biochim Biophys Acta. 1965 Mar 15;95:486–502. [PubMed] [Google Scholar]
  16. Schmitter R. E., Barker D. C. A new fixation method for Schizosaccharomyces pombe. Exp Cell Res. 1967 Apr;46(1):215–220. doi: 10.1016/0014-4827(67)90422-3. [DOI] [PubMed] [Google Scholar]
  17. Tustanoff E. R., Bartley W. Development of respiration in yeast grown anaerobically on different carbon sources. Biochem J. 1964 Jun;91(3):595–600. doi: 10.1042/bj0910595. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES