Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1970 Oct;104(1):518–528. doi: 10.1128/jb.104.1.518-528.1970

Effect of Low Temperature on the Growth and Fine Structure of Bacillus subtilis1

E Karol Neale a,2, George B Chapman a
PMCID: PMC248238  PMID: 4990765

Abstract

Logarithmically growing cultures of Bacillus subtilis transferred from 37 to 15 C present atypical growth curves, and ultrathin sections of such cells reveal structural modifications involving mesosome deterioration and double cell wall formation. After a time, optical density and viable count increase, and cells regain the appearance typical of control cells, indicating a recovery from thermal stress. Subcultures of such recovered cells continue to grow well at 15 C. Cultures transferred from 37 to 12 C show atypical growth and fine structure, although no recovery from this stress is seen. Cultures previously grown at 15 C continue to grow at 12 C, and, furthermore, do not show the ultrastructural alterations seen in similar cells with a 37 C thermal history. The results of these studies suggest that low temperatures induce structural modifications in B. subtilis, that the response of a population to thermal stress may change during the period of the stress, and that thermal history may influence the response of a population to thermal stress.

Full text

PDF
518

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. CHAPMAN G. B., HILLIER J. Electron microscopy of ultra-thin sections of bacteria I. Cellular division in Bacillus cereus. J Bacteriol. 1953 Sep;66(3):362–373. doi: 10.1128/jb.66.3.362-373.1953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ellar D. J., Lundgren D. G., Slepecky R. A. Fine structure of Bacillus megaterium during synchronous growth. J Bacteriol. 1967 Oct;94(4):1189–1205. doi: 10.1128/jb.94.4.1189-1205.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Farrell J., Rose A. Temperature effects on microorganisms. Annu Rev Microbiol. 1967;21:101–120. doi: 10.1146/annurev.mi.21.100167.000533. [DOI] [PubMed] [Google Scholar]
  4. Fitz-James P. C. DISCUSSION. Bacteriol Rev. 1965 Sep;29(3):293–298. doi: 10.1128/br.29.3.293-298.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. INGRAHAM J. L. Growth of psychrophilic bacteria. J Bacteriol. 1958 Jul;76(1):75–80. doi: 10.1128/jb.76.1.75-80.1958. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. KELLENBERGER E., RYTER A., SECHAUD J. Electron microscope study of DNA-containing plasms. II. Vegetative and mature phage DNA as compared with normal bacterial nucleoids in different physiological states. J Biophys Biochem Cytol. 1958 Nov 25;4(6):671–678. doi: 10.1083/jcb.4.6.671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. LUFT J. H. Improvements in epoxy resin embedding methods. J Biophys Biochem Cytol. 1961 Feb;9:409–414. doi: 10.1083/jcb.9.2.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Landman O. E., Ryter A., Fréhel C. Gelatin-induced reversion of protoplasts of Bacillus subtilis to the bacillary form: electron-microscopic and physical study. J Bacteriol. 1968 Dec;96(6):2154–2170. doi: 10.1128/jb.96.6.2154-2170.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Marr A. G., Ingraham J. L. EFFECT OF TEMPERATURE ON THE COMPOSITION OF FATTY ACIDS IN ESCHERICHIA COLI. J Bacteriol. 1962 Dec;84(6):1260–1267. doi: 10.1128/jb.84.6.1260-1267.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. NG H., INGRAHAM J. L., MARR A. G. Damage and derepression in Escherichia coli resulting from growth at low temperatures. J Bacteriol. 1962 Aug;84:331–339. doi: 10.1128/jb.84.2.331-339.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. ROSE A. H., EVISON L. M. STUDIES ON THE BIOCHEMICAL BASIS OF THE MINIMUM TEMPERATURES FOR GROWTH OF CERTAIN PSYCHROPHILIC AND MESOPHILIC MICRO-ORGANISMS. J Gen Microbiol. 1965 Jan;38:131–141. doi: 10.1099/00221287-38-1-131. [DOI] [PubMed] [Google Scholar]
  12. Rogers H. J., McConnell M., Burdett I. D. Cell wall or membrane mutants of Bacillus subtilis and Bacillus licheniformis with grossly deformed morphology. Nature. 1968 Jul 20;219(5151):285–288. doi: 10.1038/219285a0. [DOI] [PubMed] [Google Scholar]
  13. Ryter A. Association of the nucleus and the membrane of bacteria: a morphological study. Bacteriol Rev. 1968 Mar;32(1):39–54. doi: 10.1128/br.32.1.39-54.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Shaw M. K. Formation of filaments and synthesis of macromolecules at temperatures below the minimum for growth of Escherichia coli. J Bacteriol. 1968 Jan;95(1):221–230. doi: 10.1128/jb.95.1.221-230.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Shaw M. K., Ingraham J. L. Fatty Acid Composition of Escherichia coli as a Possible Controlling Factor of the Minimal Growth Temperature. J Bacteriol. 1965 Jul;90(1):141–146. doi: 10.1128/jb.90.1.141-146.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Stokes J. L., Larkin J. M. Comparative effect of temperature on the oxidative metabolism of whole and disrupted cells of a psychrophilic and a mesophilic species of Bacillus. J Bacteriol. 1968 Jan;95(1):95–98. doi: 10.1128/jb.95.1.95-98.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. VENABLE J. H., COGGESHALL R. A SIMPLIFIED LEAD CITRATE STAIN FOR USE IN ELECTRON MICROSCOPY. J Cell Biol. 1965 May;25:407–408. doi: 10.1083/jcb.25.2.407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Weigand R. A., Shively J. M., Greenawalt J. W. Formation and ultrastructure of extra membranes in Escherichia coli. J Bacteriol. 1970 Apr;102(1):240–249. doi: 10.1128/jb.102.1.240-249.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES