Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1970 Dec;104(3):1197–1202. doi: 10.1128/jb.104.3.1197-1202.1970

Metabolism of l-Malate and d-Malate by a Species of Pseudomonas

D J Hopper a,1, P J Chapman a, S Dagley a
PMCID: PMC248277  PMID: 16559093

Abstract

Extracts of a fluorescent species of Pseudomonas grown with m-cresol, degrade gentisic acid without isomerization of the ring-fission compound, maleylpyruvate, to give eventually d-malate and pyruvate. d-Malate is also a growth substrate. l-Malate but not d-malate is oxidized by a particulate enzyme not requiring nicotinamide adenine dinucleotide (NAD) or nicotinamide adenine dinucleotide phosphate (NADP). NAD- or NADP-linked malate dehydrogenases are absent but cells contain an NADP-dependent l-malic enzyme. Exposure of cells to exogenous d-malate induces an NAD-dependent d-malic enzyme, not present when d-malate is formed endogenously. Succinate- or m-cresol-grown cells, containing no d-malic enzyme, rapidly oxidize d-malate in the presence of chloramphenicol at a concentration suffient to inhibit protein synthesis. An NADP-dependent cell-free system, prepared from succinate-grown cells which oxidized d-malate, is described.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chapman P. J., Hopper D. J. The bacterial metabolism of 2,4-xylenol. Biochem J. 1968 Dec;110(3):491–498. doi: 10.1042/bj1100491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. FRANCIS M. J., HUGHES D. E., KORNBERG H. L., PHIZACKERLEY P. J. THE OXIDATION OF L-MALATE BY PSEUDOMONAS SP. Biochem J. 1963 Dec;89:430–438. doi: 10.1042/bj0890430. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. HUGHES D. E. A press for disrupting bacteria and other micro-organisms. Br J Exp Pathol. 1951 Apr;32(2):97–109. [PMC free article] [PubMed] [Google Scholar]
  4. Hopper D. J., Chapman P. J., Dagley S. Enzymic formation of D-malate. Biochem J. 1968 Dec;110(4):798–800. doi: 10.1042/bj1100798. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Krebs H. A., Eggleston L. V. The effect of citrate on the rotation of the molybdate complexes of malate, citramalate and isocitrate. Biochem J. 1943 Sep;37(3):334–338. doi: 10.1042/bj0370334. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. LACK L. Enzymic cis-trans isomerization of maleylpyruvic acid. J Biol Chem. 1961 Nov;236:2835–2840. [PubMed] [Google Scholar]
  7. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  8. STERN J. R. Enzymic activation and cleavage of D- and L-malate. Biochim Biophys Acta. 1963 Feb 5;69:435–438. doi: 10.1016/0006-3002(63)91288-5. [DOI] [PubMed] [Google Scholar]
  9. Stern J. R., O'Brien R. W. Oxidation D-malic and beta-alkylmalic acids wild-type and mutant strains of Salmonella typhimurium and by Aerobacter aerogenes. J Bacteriol. 1969 Apr;98(1):147–151. doi: 10.1128/jb.98.1.147-151.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. TUBBS P. K., GREVILLE G. D. The oxidation of D-alpha-hydroxy acids in animal tissues. Biochem J. 1961 Oct;81:104–114. doi: 10.1042/bj0810104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. TUBOI S., KIKUCHI G. Enzymic cleavage of malate to glyoxylate and acetyl-coenzyme A. Biochim Biophys Acta. 1962 Jul 30;62:188–190. doi: 10.1016/0006-3002(62)90513-9. [DOI] [PubMed] [Google Scholar]
  12. WOLFE R. G., NEILANDS J. B. Some molecular and kinetic properties of heart malic dehydrogenase. J Biol Chem. 1956 Jul;221(1):61–69. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES