Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1971 Jan;105(1):142–149. doi: 10.1128/jb.105.1.142-149.1971

Gene Dosage for 5S Ribosomal Ribonucleic Acid in Escherichia coli and Bacillus megaterium1

B Pace a, N R Pace a
PMCID: PMC248333  PMID: 4993318

Abstract

The number of gene copies for 5S ribosomal ribonucleic acid (rRNA), relative to that for 16 and 23S rRNA, has been determined by deoxyribonucleic acid (DNA)-RNA hybridization for Escherichia coli and Bacillus megaterium. In both cases, the number of 5S rRNA genes equals the number of 16 or 23S rRNA genes. Rapid procedures for preparing extremely highly purified DNA suitable for DNA-RNA hybridization experiments and chemically pure 5S rRNA are described.

Full text

PDF
142

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Attardi G., Amaldi F. Structure and synthesis of ribosomal RNA. Annu Rev Biochem. 1970;39:183–226. doi: 10.1146/annurev.bi.39.070170.001151. [DOI] [PubMed] [Google Scholar]
  2. Bleyman M., Kondo M., Hecht N., Woese C. Transcriptional mapping: functional organization of the ribosomal and transfer ribonucleic acid cistrons in the Bacillus subtilis genome. J Bacteriol. 1969 Aug;99(2):535–543. doi: 10.1128/jb.99.2.535-543.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brownlee G. G., Sanger F., Barrell B. G. The sequence of 5 s ribosomal ribonucleic acid. J Mol Biol. 1968 Jun 28;34(3):379–412. doi: 10.1016/0022-2836(68)90168-x. [DOI] [PubMed] [Google Scholar]
  4. Brownlee G. G., Sanger F. Nucleotide sequences from the low molecular weight ribosomal RNA of Escherichia coli. J Mol Biol. 1967 Feb 14;23(3):337–353. doi: 10.1016/s0022-2836(67)80109-8. [DOI] [PubMed] [Google Scholar]
  5. Dubnau D., Smith I., Morell P., Marmur J. Gene conservation in Bacillus species. I. Conserved genetic and nucleic acid base sequence homologies. Proc Natl Acad Sci U S A. 1965 Aug;54(2):491–498. doi: 10.1073/pnas.54.2.491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fellner P., Ehresmann C., Ebel J. P. Nucleotide sequences present within the 16S ribosomal RNA of Escherichia coli. Nature. 1970 Jan 3;225(5227):26–29. doi: 10.1038/225026a0. [DOI] [PubMed] [Google Scholar]
  7. Gillespie D., Spiegelman S. A quantitative assay for DNA-RNA hybrids with DNA immobilized on a membrane. J Mol Biol. 1965 Jul;12(3):829–842. doi: 10.1016/s0022-2836(65)80331-x. [DOI] [PubMed] [Google Scholar]
  8. Morell P., Smith I., Dubnau D., Marmur J. Isolation and characterization of low molecular weight ribonucleic acid species from Bacillus subtilis. Biochemistry. 1967 Jan;6(1):258–265. doi: 10.1021/bi00853a040. [DOI] [PubMed] [Google Scholar]
  9. Pace B., Peterson R. L., Pace N. R. Formation of all stable RNA species in Escherichia coli by posttranscriptional modification. Proc Natl Acad Sci U S A. 1970 Apr;65(4):1097–1104. doi: 10.1073/pnas.65.4.1097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Smith I., Dubnau D., Morrell P., Marmur J. Chromosomal location of DNA base sequences complementary to transfer RNA and to 5 s, 16 s and 23 s ribosomal RNA in Bacillus subtilis. J Mol Biol. 1968 Apr 14;33(1):123–140. doi: 10.1016/0022-2836(68)90285-4. [DOI] [PubMed] [Google Scholar]
  11. YANKOFSKY S. A., SPIEGELMAN S. Distinct cistrons for the two ribosomal RNA components. Proc Natl Acad Sci U S A. 1963 Apr;49:538–544. doi: 10.1073/pnas.49.4.538. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Zehavi-Willner T., Comb D. G. Studies on the relationship between transfer RNA and transfer-like RNA. J Mol Biol. 1966 Mar;16(1):250–254. doi: 10.1016/s0022-2836(66)80278-4. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES