Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1971 Feb;105(2):483–488. doi: 10.1128/jb.105.2.483-488.1971

Function of Ubiquinone in Electron Transport from Reduced Nicotinamide Adenine Dinucleotide to Nitrate and Oxygen in Aerobacter aerogenes

D L Knook 1, R J Planta 1
PMCID: PMC248401  PMID: 4100202

Abstract

The possible role of quinones in the electron transport system of Aerobacter aerogenes was investigated. The only quinone found in measurable amounts in bacteria grown in minimal media under both aerobic and anaerobic conditions was ubiquinone-8. Membrane-bound ubiquinone-8 could be removed by extraction with pentane, or destroyed by ultraviolet irradiation, with a concomitant loss of both reduced nicotinamide adenine dinucleotide (NADH) oxidase and NADH-linked respiratory nitrate reductase activity. In the extracted membrane preparations, these enzymatic activities could be restored, both to the same degree, by incorporation of ubiquinone-6, -8, or -10, but not by incorporation of menaquinones. The NADH oxidation and the nitrate reduction were sensitive to the respiratory inhibitors dicoumarol, lapachol, and cyanide. The results obtained indicate that ubiquinone-8 mediates the electron transport between NADH and oxygen as well as between NADH and nitrate. Branching of the electron transport chain to oxygen and nitrate occurs after an initial common pathway.

Full text

PDF
483

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. 't Riet J van, Stouthamer A. H., Planta R. J. Regulation of nitrate assimilation and nitrate respiration in Aerobacter aerogenes. J Bacteriol. 1968 Nov;96(5):1455–1464. doi: 10.1128/jb.96.5.1455-1464.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BISHOP D. H., PANDYA K. P., KING H. K. Ubiquinone and vitamin K in bacteria. Biochem J. 1962 Jun;83:606–614. doi: 10.1042/bj0830606. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brodie A. F. Biological function of terpenoid quinones. Biochem J. 1969 Jul;113(3):25P–26P. doi: 10.1042/bj1130025p. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cox G. B., Newton N. A., Gibson F., Snoswell A. M., Hamilton J. A. The function of ubiquinone in Escherichia coli. Biochem J. 1970 Apr;117(3):551–562. doi: 10.1042/bj1170551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cox G. B., Snoswell A. M., Gibson F. The use of a ubiquinone-deficient mutant in the study of malate oxidation in Escherichia coli. Biochim Biophys Acta. 1968 Jan 15;153(1):1–12. doi: 10.1016/0005-2728(68)90140-0. [DOI] [PubMed] [Google Scholar]
  6. Erickson S. K., Parker G. L. The electron-transport system of Micrococcus lutea (Sarcina lutea). Biochim Biophys Acta. 1969 May;180(1):56–62. doi: 10.1016/0005-2728(69)90193-5. [DOI] [PubMed] [Google Scholar]
  7. Ernster L., Lee I. Y., Norling B., Persson B. Studies with ubiquinone-depleted submitochondrial particles. Essentiality of ubiquinone for the interaction of succinate dehydrogenase, NADH dehydrogenase, and cytochrome b. Eur J Biochem. 1969 Jun;9(3):299–310. doi: 10.1111/j.1432-1033.1969.tb00609.x. [DOI] [PubMed] [Google Scholar]
  8. FORGET P., PICHINOTY F. INFLUENCE DE LA RESPIRATION ANA'EROBIE DU NITRATE ET DU FUMARATE SUR LE M'ETABOLISME FERMENTAIRE D'AEROBACTER AEROGENES. Biochim Biophys Acta. 1964 Feb 10;82:441–444. doi: 10.1016/0304-4165(64)90328-9. [DOI] [PubMed] [Google Scholar]
  9. Fujita M., Ishikawa S., Shimazono N. Respiratory chain and phosphorylation site of the sonicated membrane fragments of Micrococcus lysodeikticus. J Biochem. 1966 Feb;59(2):104–114. doi: 10.1093/oxfordjournals.jbchem.a128269. [DOI] [PubMed] [Google Scholar]
  10. HADJIPETROU L. P., STOUTHAMER A. H. ENERGY PRODUCTION DURING NITRATE RESPIRATION BY AEROBACTER AEROGENES. J Gen Microbiol. 1965 Jan;38:29–34. doi: 10.1099/00221287-38-1-29. [DOI] [PubMed] [Google Scholar]
  11. Kröger A., Dadák V. On the role of quinones in bacterial electron transport. The respiratory system of Bacillus megaterium. Eur J Biochem. 1969 Dec;11(2):328–340. doi: 10.1111/j.1432-1033.1969.tb00776.x. [DOI] [PubMed] [Google Scholar]
  12. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  13. Polglase W. J., Pun W. T., Withaar J. Lipoquinones of Escherichia coli. Biochim Biophys Acta. 1966 May 5;118(2):425–426. doi: 10.1016/s0926-6593(66)80053-x. [DOI] [PubMed] [Google Scholar]
  14. Spiller G. H., Threlfall D. R., Whistance G. R. Biosynthesis of ubiquinone in yeast, Phycomyces blakesleeanus, and Agaricus campestris. Arch Biochem Biophys. 1968 Jun;125(3):786–796. doi: 10.1016/0003-9861(68)90515-8. [DOI] [PubMed] [Google Scholar]
  15. Swank R. T., Burris R. H. Restoration by ubiquinone of Azotobacter vinelandii reduced nicotinamide adenine dinucleotide oxidase activity. J Bacteriol. 1969 Apr;98(1):311–313. doi: 10.1128/jb.98.1.311-313.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Szarkowska L. The restoration of DPNH oxidase activity by coenzyme Q (ubiquinone). Arch Biochem Biophys. 1966 Mar;113(3):519–525. doi: 10.1016/0003-9861(66)90228-1. [DOI] [PubMed] [Google Scholar]
  17. Threlfall D. R., Goodwin T. W. Nature, intracellular distribution and formation of terpenoid quinones in Euglena gracilis. Biochem J. 1967 May;103(2):573–588. doi: 10.1042/bj1030573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Whistance G. R., Dillon J. F., Threlfall D. R. The nature, intergeneric distribution and biosynthesis of isoprenoid quinones and phenols in gram-negative bacteria. Biochem J. 1969 Feb;111(4):461–472. doi: 10.1042/bj1110461. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES