Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1971 Mar;105(3):787–792. doi: 10.1128/jb.105.3.787-792.1971

Deoxynucleoside Kinases of Bacillus megaterium KM

J T Wachsman 1, D D Morgan 1
PMCID: PMC248501  PMID: 4994037

Abstract

Dialyzed extracts of Bacillus megaterium KM contain thymidine, deoxyadenosine, and deoxyguanosine kinase activities. Thymidine kinase activity is best with deoxyadenosine triphosphate or deoxyguanosine triphosphate (dGTP) as the phosphoryl donor, whereas the best deoxyadenosine kinase activity is obtained with dGTP or adenosine triphosphate. Deoxyguanosine kinase activity functions optimally with deoxycytidine triphosphate as the donor. Although the thymidine kinase activity of crude extracts does not have a demonstrable divalent cation requirement, the addition of Mg2+ or Mn2+ is necessary for the formation of thymidine di- and triphosphates. The synthesis of thymidine kinase appears to be partially derepressed by thymine starvation. Incubation of extracts with deoxyadenosine and dGTP results in the substantial accumulation of deoxyadenosine di- and triphosphates. Extracts deaminate deoxycytidine to deoxyuridine, presumably as a consequence of the action of deoxycytidine deaminase, and then convert deoxyuridine to deoxyuridylic acid. B. megaterium extracts do not contain any detectable deoxycytidine kinase activity.

Full text

PDF
787

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BOLLUM F. J., POTTER V. R. Nucleic acid metabolism in regenerating rat liver. VI. Soluble enzymes which convert thymidine to thymidine phosphates and DNA. Cancer Res. 1959 Jun;19(5):561–565. [PubMed] [Google Scholar]
  2. Bresnick E., Thompson U. B. Properties of deoxythymidine kinase partially purified from animal tumors. J Biol Chem. 1965 Oct;240(10):3967–3974. [PubMed] [Google Scholar]
  3. CHMIELEWICZ Z. F., PENNY A. G. A RAPID METHOD FOR THE SEPARATION OF DEOXYRIBOSIDES AND THEIR PHOSPHORYLATED DERIVATIVES BY HORIZONTAL PAPER CHROMATOGRAPHY. Anal Biochem. 1964 Jan;7:126–128. doi: 10.1016/0003-2697(64)90129-0. [DOI] [PubMed] [Google Scholar]
  4. GRIPPO P., IACCARINO M., ROSSI M., SCARANO E. THIN-LAYER CHROMATOGRAPHY OF NUCLEOTIDES, NUCLEOSIDES AND NUCLEIC ACID BASES. Biochim Biophys Acta. 1965 Jan 11;95:1–7. doi: 10.1016/0005-2787(65)90204-2. [DOI] [PubMed] [Google Scholar]
  5. Grivell A. R., Jackson J. F. Thymidine kinase: evidence for its absence from Neurospora crassa and some other micro-organisms, and the relevance of this to the specific labelling of deoxyribonucleic acid. J Gen Microbiol. 1968 Dec;54(2):307–317. doi: 10.1099/00221287-54-2-307. [DOI] [PubMed] [Google Scholar]
  6. Hiraga S., Igarashi K., Yura T. A deoxythymidine kinase-deficient mutant of Escherichia coli. I. Isolation and some properties. Biochim Biophys Acta. 1967 Aug 22;145(1):41–51. doi: 10.1016/0005-2787(67)90652-1. [DOI] [PubMed] [Google Scholar]
  7. Hiraga S., Sugino Y. Nucleoside monophosphokinases of Escherichia coli infected and uninfected with an RNA phage. Biochim Biophys Acta. 1966 Feb 21;114(2):416–418. doi: 10.1016/0005-2787(66)90324-8. [DOI] [PubMed] [Google Scholar]
  8. Iwatsuki N., Okazaki R. Mechanism of regulation of deoxythymidine kinase of Escherichia coli. I. Effect of regulatory deoxynucleotides on the state of aggregation of the enzyme. J Mol Biol. 1967 Oct 14;29(1):139–154. doi: 10.1016/0022-2836(67)90186-6. [DOI] [PubMed] [Google Scholar]
  9. Iwatsuki N., Okazaki R. Mechanism of regulation of deoxythymidine kinase of Escherichia coli. II. Effect of temperature on the enzyme activity and kinetics. J Mol Biol. 1967 Oct 14;29(1):155–165. doi: 10.1016/0022-2836(67)90187-8. [DOI] [PubMed] [Google Scholar]
  10. KIT S., PIEKARSKI L. J., DUBBS D. R. Induction of thymidine kinase by vaccinia-infected mouse fibroblasts. J Mol Biol. 1963 Jan;6:22–33. doi: 10.1016/s0022-2836(63)80078-9. [DOI] [PubMed] [Google Scholar]
  11. Kessel D. Properties of deoxycytidine kinase partially purified from L1210 cells. J Biol Chem. 1968 Sep 25;243(18):4739–4744. [PubMed] [Google Scholar]
  12. Krygier V., Momparler R. L. The regulatory properties of deoxyadenosine kinase. Biochim Biophys Acta. 1968 Jul 23;161(2):578–580. doi: 10.1016/0005-2787(68)90139-1. [DOI] [PubMed] [Google Scholar]
  13. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  14. MALEY F., MALEY G. F. On the nature of a sparing effect by thymidine on the utilization of deoxycytidine. Biochemistry. 1962 Sep;1:847–851. doi: 10.1021/bi00911a017. [DOI] [PubMed] [Google Scholar]
  15. Neuhard J. Pyrimidine nucleotide metabolism and pathways of thymidine triphosphate biosynthesis in Salmonella typhimurium. J Bacteriol. 1968 Nov;96(5):1519–1527. doi: 10.1128/jb.96.5.1519-1527.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. OKAZAKI R., KORNBERG A. DEOXYTHYMIDINE KINASE OF ESCHERICHIA COLI. I. PURIFICATION AND SOME PROPERTIES OF THE ENZYME. J Biol Chem. 1964 Jan;239:269–274. [PubMed] [Google Scholar]
  17. OKAZAKI R., KORNBERG A. DEOXYTHYMIDINE KINASE OF ESCHERICHIA COLI. II. KINETICS AND FEEDBACK CONTROL. J Biol Chem. 1964 Jan;239:275–284. [PubMed] [Google Scholar]
  18. Wachsman J. T., Kemp S., Kogg L. Thymineless death in Bacillus megaterium. J Bacteriol. 1964 May;87(5):1079–1086. doi: 10.1128/jb.87.5.1079-1086.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES