Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1971 Mar;105(3):999–1005. doi: 10.1128/jb.105.3.999-1005.1971

Lactate Metabolism by Veillonella parvula

Stephen K C Ng 1, Ian R Hamilton 1
PMCID: PMC248529  PMID: 4323300

Abstract

A strain of Veillonella parvula M4, which grows readily in lactate broth without a requirement for carbon dioxide, has been isolated from the oral cavity. Anaerobic, washed cells of this organism fermented sodium lactate to the following products (moles/100 moles of lactate): propionate, 66; acetate, 40; carbon dioxide, 40; and hydrogen, 14. Cells grew readily in tryptone-yeast extract broth with pyruvate, oxaloacetate, malate, and fumarate, but poorly with succinate. The fermentation of pyruvate, oxaloacetate, or lactate plus oxaloacetate by washed cells resulted in the formation of propionate and acetate in ratios significantly lower than those observed with lactate as the sole carbon source. This was primarily due to increased acetate production. Cell-free extracts were unable to degrade lactate but metabolized lactate in the presence of oxaloacetate, indicating the presence of malic-lactic transhydrogenase in this organism. Lactic dehydrogenase activity was not observed. Evidence is presented for oxaloacetate decarboxylase and malic dehydrogenase activities in extracts.

Full text

PDF
999

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen S. H. The isolation and characterization of malate-lactate transhydrogenase from Micrococcus lactilyticus. J Biol Chem. 1966 Nov 25;241(22):5266–5275. [PubMed] [Google Scholar]
  2. COHEN L. H., NOELL W. K. Glucose catabolism of rabbit retina before and after development of visual function. J Neurochem. 1960 May;5:253–276. doi: 10.1111/j.1471-4159.1960.tb13363.x. [DOI] [PubMed] [Google Scholar]
  3. Delwiche E. A. Mechanism of Propionic Acid Formation by Propionibacterium pentosaceum. J Bacteriol. 1948 Dec;56(6):811–820. doi: 10.1128/jb.56.6.811-820.1948. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dolin M. I., Phares E. F., Long M. V. Bound pyridine nucleotide of malic-lactic transhydrogenase. Biochem Biophys Res Commun. 1965 Nov 22;21(4):303–310. doi: 10.1016/0006-291x(65)90193-2. [DOI] [PubMed] [Google Scholar]
  5. Foubert E. L., Douglas H. C. Studies on the Anaerobic Micrococci: II. The Fermentation of Lactate by Micrococcus lactilyticus. J Bacteriol. 1948 Jul;56(1):35–36. [PMC free article] [PubMed] [Google Scholar]
  6. Galivan J. H., Allen S. H. Methylmalonyl coenzyme A decarboxylase. Its role in succinate decarboxylation by Micrococcus lactilyticus. J Biol Chem. 1968 Mar 25;243(6):1253–1261. [PubMed] [Google Scholar]
  7. Hamilton I. R., Burris R. H., Wilson P. W. Pyruvate metabolism by a nitrogen-fixing bacterium. Biochem J. 1965 Aug;96(2):383–389. doi: 10.1042/bj0960383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hamilton I. R. Synthesis and degradiation of intracellular polyglucose in Streptococcus salivarius. Can J Microbiol. 1968 Jan;14(1):65–77. doi: 10.1139/m68-011. [DOI] [PubMed] [Google Scholar]
  9. JOHNS A. T. Isolation of a bacterium, producing propionic acid, from the rumen of sheep. J Gen Microbiol. 1951 May;5(2):317–325. doi: 10.1099/00221287-5-2-317. [DOI] [PubMed] [Google Scholar]
  10. JOHNS A. T. The mechanism of propionic acid formation by Veillonella gazogenes. J Gen Microbiol. 1951 May;5(2):326–336. doi: 10.1099/00221287-5-2-326. [DOI] [PubMed] [Google Scholar]
  11. Krebs H. A., Hems R., Weidemann M. J., Speake R. N. The fate of isotopic carbon in kidney cortex synthesizing glucose from lactate. Biochem J. 1966 Oct;101(1):242–249. doi: 10.1042/bj1010242. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. McCormick N. G., Ordal E. J., Whiteley H. R. DEGRADATION OF PYRUVATE BY MICROCOCCUS LACTILYTICUS I. : General Properties of the Formate-Exchange Reaction. J Bacteriol. 1962 Apr;83(4):887–898. doi: 10.1128/jb.83.4.887-898.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. ROGOSA M. A selective medium for the isolation and enumeration of the veillonella from the oral cavity. J Bacteriol. 1956 Oct;72(4):533–536. doi: 10.1128/jb.72.4.533-536.1956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. ROGOSA M., BISHOP F. S. THE GENUS VEILLONELLA . II. NUTRITIONAL STUDIES. J Bacteriol. 1964 Mar;87:574–580. doi: 10.1128/jb.87.3.574-580.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. ROGOSA M., BISHOP F. S. THE GENUS VEILLONELLA. 3. HYDROGEN SULFIDE PRODUCTION BY GROWING CULTURES. J Bacteriol. 1964 Jul;88:37–41. doi: 10.1128/jb.88.1.37-41.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. ROGOSA M., FITZGERALD R. J., MACKINTOSH M. E., BEAMAN A. J. Improved medium for selective isolation of Veillonella. J Bacteriol. 1958 Oct;76(4):455–456. doi: 10.1128/jb.76.4.455-456.1958. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. ROGOSA M. THE GENUS VEILLONELLA. I. GENERAL CULTURAL, ECOLOGICAL, AND BIOCHEMICAL CONSIDERATIONS. J Bacteriol. 1964 Jan;87:162–170. doi: 10.1128/jb.87.1.162-170.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Rogosa M. The Genus Veillonella IV. Serological Groupings, and Genus and Species Emendations. J Bacteriol. 1965 Sep;90(3):704–709. doi: 10.1128/jb.90.3.704-709.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Swick R. W., Wood H. G. THE ROLE OF TRANSCARBOXYLATION IN PROPIONIC ACID FERMENTATION. Proc Natl Acad Sci U S A. 1960 Jan;46(1):28–41. doi: 10.1073/pnas.46.1.28. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES