Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1971 Mar;105(3):1063–1072. doi: 10.1128/jb.105.3.1063-1072.1971

Biosynthesis of T1 Antigen in Salmonella: Origin of d-Galactofuranose and d-Ribofuranose Residues

Matti Sarvas a,1, Hiroshi Nikaido a
PMCID: PMC248537  PMID: 4926677

Abstract

The “T1 side chain” portion of cell wall lipopolysaccharide from T1 strains of Salmonella contains d-galactofuranose and d-ribofuranose residues. Isotope labeling studies, using intact cells of mutants each blocked at either of the two different steps of d-galactose metabolism (uridine diphosphate-glucose 4-epimerase and galactose-1-P uridylyl transferase) or at phosphoglucoisomerase, led to the following conclusions. (i) d-Galactofuranose residues are synthesized from d-galactopyranose or its derivatives, rather than by a direct conversion from other hexopyranoses or their derivatives. (ii) The pyranose-to-furanose conversion does not appear to take place at the level of the free d-galactose or d-galactose 1-phosphate. This result suggests that the conversion may occur at the stage of uridine diphosphate-d-galactose. (iii) In a mutant lacking phosphoglucoisomerase, d-ribofuranose residues in T1 side chains contained 14C derived from exogenous d-fructose-U-14C, but little 3H from exogenous d-glucose-1-3H. Thus, no evidence was found for a direct pathway of aldohexose-to-ribose conversion involving a loss of one of the carbons in the C2-C6 moiety of aldohexoses. This suggests, but does not prove, that the T1 ribofuranose residues are synthesized by conventional mechanisms involving hexose monophosphate shunt and transketolase-transaldolase reactions.

Full text

PDF
1063

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berst M., Hellerqvist C. G., Lindberg B., Lüderitz O., Svensson S., Westphal O. Structural investigations on T1 lipopolysaccharides. Eur J Biochem. 1969 Dec;11(2):353–359. doi: 10.1111/j.1432-1033.1969.tb00779.x. [DOI] [PubMed] [Google Scholar]
  2. COHEN G. N., RICKENBERG H. V. Concentration spécifique réversible des amino acides chez Escherichia coli. Ann Inst Pasteur (Paris) 1956 Nov;91(5):693–720. [PubMed] [Google Scholar]
  3. FEINGOLD D. S., NEUFELD E. F., HASSID W. Z. The 4-epimerization and decarboxylation of uridine diphosphate D-glucuronic acid by extracts from Phaseolus aureus seedlings. J Biol Chem. 1960 Apr;235:910–913. [PubMed] [Google Scholar]
  4. FRAENKEL D., OSBORN M. J., HORECKER B. L., SMITH S. M. Metabolism and cell wall structure of a mutant of Salmonella typhimurium deficient in phosphoglucose isomerase. Biochem Biophys Res Commun. 1963 Jun 20;11:423–428. doi: 10.1016/0006-291x(63)90086-x. [DOI] [PubMed] [Google Scholar]
  5. FUKASAWA T., NIKAIDO H. Formation of phage receptors induced by galactose in a galactose-sensitive mutant of Salmonella. Virology. 1960 Jun;11:508–510. doi: 10.1016/0042-6822(60)90093-3. [DOI] [PubMed] [Google Scholar]
  6. GANDER J. E. Biogenesis of galactocarolose by Penicillium charlesii. I. Incorporation of C14 from glucose-C14 and DL-tartrate-1,4-C14 into polyglactose. Arch Biochem Biophys. 1960 Dec;91:307–309. doi: 10.1016/0003-9861(60)90505-1. [DOI] [PubMed] [Google Scholar]
  7. Haworth W. N., Raistrick H., Stacey M. Polysaccharides synthesised by micro-organisms: The molecular structure of galactocarolose produced from glucose by Penicillium Charlesii G. Smith. Biochem J. 1937 Apr;31(4):640–644. doi: 10.1042/bj0310640. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. KAUFFMANN F. A new antigen of Salmonella paratyphi B and Salmonella typhi murium. Acta Pathol Microbiol Scand. 1956;39(4):299–304. doi: 10.1111/j.1699-0463.1956.tb03405.x. [DOI] [PubMed] [Google Scholar]
  9. Kalckar H. M., Kurahashi K., Jordan E. HEREDITARY DEFECTS IN GALACTOSE METABOLISM IN ESCHERICHIA COLI MUTANTS, I. DETERMINATION OF ENZYME ACTIVITIES. Proc Natl Acad Sci U S A. 1959 Dec;45(12):1776–1786. doi: 10.1073/pnas.45.12.1776. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lindberg A. A., Sarvas M., Mäkelä P. H. Bacteriophage attachment to the somatic antigen of salmonella: effect of o-specific structures in leaky R mutants and s, t1 hybrids. Infect Immun. 1970 Jan;1(1):88–97. doi: 10.1128/iai.1.1.88-97.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Manners D. J., Pennie I. R., Ryley J. F. The reserve polysaccharides of Prototheca zopfli. Biochem J. 1967 Aug;104(2):32P–32P. [PMC free article] [PubMed] [Google Scholar]
  12. NIKAIDO H. Galactose-sensitive mutants of Salmonella. I. Metabolism of galactose. Biochim Biophys Acta. 1961 Apr 15;48:460–469. doi: 10.1016/0006-3002(61)90044-0. [DOI] [PubMed] [Google Scholar]
  13. Nikaido H., Nikaido K., Mäkelä P. H. Genetic determination of enzymes synthesizing O-specific sugars of Salmonella lipopolysaccharides. J Bacteriol. 1966 Mar;91(3):1126–1135. doi: 10.1128/jb.91.3.1126-1135.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Nikaido H., Sarvas M. Biosynthesis of T1 antigen in Salmonella: biosynthesis in a cell-free system. J Bacteriol. 1971 Mar;105(3):1073–1082. doi: 10.1128/jb.105.3.1073-1082.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Nikaido H. Structure of cell wall lipopolysaccharide from Salmonella typhimurium. I. Linkage between o side chains and R core. J Biol Chem. 1969 Jun 10;244(11):2835–2845. [PubMed] [Google Scholar]
  16. PARK J. T., JOHNSON M. J. A submicrodetermination of glucose. J Biol Chem. 1949 Nov;181(1):149–151. [PubMed] [Google Scholar]
  17. Plackett P., Buttery S. H. A galactofuranose disaccharide from the galactan of Mycoplasma mycoides. Biochem J. 1964 Jan;90(1):201–205. doi: 10.1042/bj0900201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Rao E. V., Buchanan J. G., Baddiley J. The type-specific substance from Pneumococcus type 10A(34). Structure of the dephosphorylated repeating unit. Biochem J. 1966 Sep;100(3):801–810. doi: 10.1042/bj1000801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Rao E. V., Watson M. J., Buchanan J. G., Baddiley J. The type-specific substance from Pneumococcus type 29. Biochem J. 1969 Feb;111(4):547–556. doi: 10.1042/bj1110547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Roberts W. K., Buchanan J. G., Baddiley J. The specific substance from Pneumococcus type 34 (41). The structure of a phosphorus-free repeating unit. Biochem J. 1963 Jul;88(1):1–7. doi: 10.1042/bj0880001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Sable H. Z. Biosynthesis of ribose and deoxyribose. Adv Enzymol Relat Areas Mol Biol. 1966;28:391–460. doi: 10.1002/9780470122730.ch7. [DOI] [PubMed] [Google Scholar]
  22. Sanderson K. E. Current linkage map of Salmonella typhimurium. Bacteriol Rev. 1970 Jun;34(2):176–193. doi: 10.1128/br.34.2.176-193.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Sarvas M. Inheritance of Salmonella T1 antigen. Ann Med Exp Biol Fenn. 1967;45(4):447–471. [PubMed] [Google Scholar]
  24. Stocker B. A., Wilkinson R. G., Mäkelä P. H. Genetic aspects of biosynthesis and structure of Salmonella somatic polysaccharide. Ann N Y Acad Sci. 1966 Jun 30;133(2):334–348. doi: 10.1111/j.1749-6632.1966.tb52375.x. [DOI] [PubMed] [Google Scholar]
  25. TINELLI R., STAUB A. M. [Chemical study of the somatic polyosides of Salmonella species. III. Periodic acid oxidation of the polyosides extracted from different Salmonella species]. Bull Soc Chim Biol (Paris) 1959;41:1221–1231. [PubMed] [Google Scholar]
  26. TREVELYAN W. E., PROCTER D. P., HARRISON J. S. Detection of sugars on paper chromatograms. Nature. 1950 Sep 9;166(4219):444–445. doi: 10.1038/166444b0. [DOI] [PubMed] [Google Scholar]
  27. Trejo A. G., Chittenden G. J., Buchanan J. G., Baddiley J. Uridine diphosphate alpha-D-galactofuranose, an intermediate in the biosynthesis of galactofuranosyl residues. Biochem J. 1970 Apr;117(3):637–639. doi: 10.1042/bj1170637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Wheat R. W., Berst M., Ruschmann E., Lüderitz O., Westphal O. Lipopolysaccharides of Salmonella T mutants. J Bacteriol. 1967 Nov;94(5):1366–1380. doi: 10.1128/jb.94.5.1366-1380.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Wilkinson R. G., Stocker B. A. Genetics and cultural properties of mutants of Salmonella typhimurium lacking glucosyl or galactosyl lipopolysaccharide transferases. Nature. 1968 Mar 9;217(5132):955–957. doi: 10.1038/217955a0. [DOI] [PubMed] [Google Scholar]
  30. Wu H. C., Kalckar H. M. Endogenous induction of the galactose operon in Escherichia coli K12. Proc Natl Acad Sci U S A. 1966 Mar;55(3):622–629. doi: 10.1073/pnas.55.3.622. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Yarmolinsky M. B., Wiesmeyer H., Kalckar H. M., Jordan E. HEREDITARY DEFECTS IN GALACTOSE METABOLISM IN ESCHERICHIA COLI MUTANTS, II. GALACTOSE-INDUCED SENSITIVITY. Proc Natl Acad Sci U S A. 1959 Dec;45(12):1786–1791. doi: 10.1073/pnas.45.12.1786. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Yuasa R., Levinthal M., Nikaido H. Biosynthesis of cell wall lipopolysaccharide in mutants of Salmonella. V. A mutant of Salmonella typhimurium defective in the synthesis of cytidine diphosphoabequose. J Bacteriol. 1969 Oct;100(1):433–444. doi: 10.1128/jb.100.1.433-444.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES