Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1990 Nov;64(11):5430–5440. doi: 10.1128/jvi.64.11.5430-5440.1990

Attenuated murine cytomegalovirus binds to N-acetylglucosamine, and shift to virulence may involve recognition of sialic acids.

R M Ravindranath 1, M C Graves 1
PMCID: PMC248594  PMID: 2170680

Abstract

Treatment of cells with lectins specific for N-acetylglucosamine (GlcNAc) blocked infection by mouse cytomegalovirus (MCMV), and GlcNAc pretreatment of the lectin blocked this effect. MCMV failed to infect N-acetylglucosaminidase (GlcNAcase)-treated mouse embryo fibroblasts (MEF). GlcNAc and GlcNAc-containing synthetic oligosaccharides directly inhibited viral infectivity. Ulex lectin inhibition of infection was shown to be due to inhibition of surface adsorption of 35S-labeled virus. Also, GlcNAcase eluted 35S-labeled virus adsorbed to MEF at 4 degrees C and inhibited plaque formation if added after adsorption at this temperature. These findings indicate that GlcNAc binding is involved in attachment rather than in some later step in infection. High-performance thin-layer chromatography overlay of [35S]MCMV indicated that it binds to a GlcNAc-containing asialoglycolipid. Analogous experiments indicated that MCMV made virulent by in vivo salivary gland passage binds to sialic acids in addition to GlcNAc. Treatment of MEF with sialic acid-binding lectins blocked infectivity. Incubation of virus with sialic acids also prevented infection. N-acetylneuraminic acid was 10(3)-fold more potent than N-glycolylneuraminic acid. Sialidase-treated target cells were not efficiently infected by the virus. Thus, MCMV binds to GlcNAc on the cell surface, and the shift to virulence (by in vivo salivary gland passage) correlates with viral recognition of sialic acids.

Full text

PDF
5430

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baker D. A., Sugii S., Kabat E. A., Ratcliffe R. M., Hermentin P., Lemieux R. U. Immunochemical studies on the combining sites of Forssman hapten reactive hemagglutinins from Dolichos biflorus, Helix pomatia, and Wistaria floribunda. Biochemistry. 1983 May 24;22(11):2741–2750. doi: 10.1021/bi00280a023. [DOI] [PubMed] [Google Scholar]
  2. Beck S., Barrell B. G. Human cytomegalovirus encodes a glycoprotein homologous to MHC class-I antigens. Nature. 1988 Jan 21;331(6153):269–272. doi: 10.1038/331269a0. [DOI] [PubMed] [Google Scholar]
  3. Benko D. M., Gibson W. Primate cytomegalovirus glycoproteins: lectin-binding properties and sensitivities to glycosidases. J Virol. 1986 Sep;59(3):703–713. doi: 10.1128/jvi.59.3.703-713.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cai W. H., Gu B., Person S. Role of glycoprotein B of herpes simplex virus type 1 in viral entry and cell fusion. J Virol. 1988 Aug;62(8):2596–2604. doi: 10.1128/jvi.62.8.2596-2604.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Carroll S. M., Higa H. H., Paulson J. C. Different cell-surface receptor determinants of antigenically similar influenza virus hemagglutinins. J Biol Chem. 1981 Aug 25;256(16):8357–8363. [PubMed] [Google Scholar]
  6. Chong K. T., Gould J. J., Mims C. A. Neutralization of different strains of murine cytomegalovirus (MCMV)-effect of in vitro passage. Arch Virol. 1981;69(2):95–104. doi: 10.1007/BF01315153. [DOI] [PubMed] [Google Scholar]
  7. Chong K. T., Mims C. A. Murine cytomegalovirus particle types in relation to sources of virus and pathogenicity. J Gen Virol. 1981 Dec;57(Pt 2):415–419. doi: 10.1099/0022-1317-57-2-415. [DOI] [PubMed] [Google Scholar]
  8. Crowley J. F., Goldstein I. J., Arnarp J., Lönngren J. Carbohydrate binding studies on the lectin from Datura stramonium seeds. Arch Biochem Biophys. 1984 Jun;231(2):524–533. doi: 10.1016/0003-9861(84)90417-x. [DOI] [PubMed] [Google Scholar]
  9. Cummings R. D., Kornfeld S. Characterization of the structural determinants required for the high affinity interaction of asparagine-linked oligosaccharides with immobilized Phaseolus vulgaris leukoagglutinating and erythroagglutinating lectins. J Biol Chem. 1982 Oct 10;257(19):11230–11234. [PubMed] [Google Scholar]
  10. Eizuru Y., Minamishima Y. Co-variation of pathogenicity and antigenicity in murine cytomegalovirus. Microbiol Immunol. 1979;23(6):559–564. doi: 10.1111/j.1348-0421.1979.tb00496.x. [DOI] [PubMed] [Google Scholar]
  11. Gilbride K. J., Pistole T. G. Isolation and characterization of a bacterial agglutinin in the serum of Limulus polyphemus. Prog Clin Biol Res. 1979;29:525–535. [PubMed] [Google Scholar]
  12. Graves M. C., Silver S. M., Choppin P. W. Measles virus polypeptides synthesis in infected cells. Virology. 1978 May 1;86(1):254–263. doi: 10.1016/0042-6822(78)90025-9. [DOI] [PubMed] [Google Scholar]
  13. Green E. D., Baenziger J. U. Oligosaccharide specificities of Phaseolus vulgaris leukoagglutinating and erythroagglutinating phytohemagglutinins. Interactions with N-glycanase-released oligosaccharides. J Biol Chem. 1987 Sep 5;262(25):12018–12029. [PubMed] [Google Scholar]
  14. Grundy J. E., McKeating J. A., Ward P. J., Sanderson A. R., Griffiths P. D. Beta 2 microglobulin enhances the infectivity of cytomegalovirus and when bound to the virus enables class I HLA molecules to be used as a virus receptor. J Gen Virol. 1987 Mar;68(Pt 3):793–803. doi: 10.1099/0022-1317-68-3-793. [DOI] [PubMed] [Google Scholar]
  15. Helenius A., Morein B., Fries E., Simons K., Robinson P., Schirrmacher V., Terhorst C., Strominger J. L. Human (HLA-A and HLA-B) and murine (H-2K and H-2D) histocompatibility antigens are cell surface receptors for Semliki Forest virus. Proc Natl Acad Sci U S A. 1978 Aug;75(8):3846–3850. doi: 10.1073/pnas.75.8.3846. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Howard R. J., Mattsson D. M., Seidel M. V., Balfour H. H., Jr Cell-mediated immunity to murine cytomegalovirus. J Infect Dis. 1978 Nov;138(5):567–604. [PubMed] [Google Scholar]
  17. Hudson J. B., Misra V., Mosmann T. R. Properties of the multicapsid virions of murine cytomegalovirus. Virology. 1976 Jul 1;72(1):224–234. doi: 10.1016/0042-6822(76)90325-1. [DOI] [PubMed] [Google Scholar]
  18. Iglesias J. L., Lis H., Sharon N. Purification and properties of a D-galactose/N-acetyl-D-galactosamine-specific lectin from Erythrina cristagalli. Eur J Biochem. 1982 Apr 1;123(2):247–252. doi: 10.1111/j.1432-1033.1982.tb19760.x. [DOI] [PubMed] [Google Scholar]
  19. Inada T., Chong K. T., Mims C. A. Enhancing antibodies, macrophages and virulence in mouse cytomegalovirus infection. J Gen Virol. 1985 Apr;66(Pt 4):871–878. doi: 10.1099/0022-1317-66-4-871. [DOI] [PubMed] [Google Scholar]
  20. Inada T., Mims C. A. Association of virulence of murine cytomegalovirus with macrophage susceptibility and with virion-bound non-neutralizing antibody. J Gen Virol. 1985 Apr;66(Pt 4):879–882. doi: 10.1099/0022-1317-66-4-879. [DOI] [PubMed] [Google Scholar]
  21. Jordan M. C., Takagi J. L., Stevens J. G. Activation of latent murine cytomegalovirus in vivo and in vitro: a pathogenetic role for acute infection. J Infect Dis. 1982 May;145(5):699–705. doi: 10.1093/infdis/145.2.699. [DOI] [PubMed] [Google Scholar]
  22. Jordan M. C., Takagi J. L. Virulence characteristics of murine cytomegalovirus in cell and organ cultures. Infect Immun. 1983 Aug;41(2):841–843. doi: 10.1128/iai.41.2.841-843.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Karlsson K. A., Strömberg N. Overlay and solid-phase analysis of glycolipid receptors for bacteria and viruses. Methods Enzymol. 1987;138:220–232. doi: 10.1016/0076-6879(87)38019-x. [DOI] [PubMed] [Google Scholar]
  24. Kohn A. Membrane effects of cytopathogenic viruses. Prog Med Virol. 1985;31:109–167. [PubMed] [Google Scholar]
  25. Kurokawa T., Tsuda M., Sugino Y. Purification and characterization of a lectin from Wistaria floribunda seeds. J Biol Chem. 1976 Sep 25;251(18):5686–5693. [PubMed] [Google Scholar]
  26. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  27. Ladisch S., Gillard B. Isolation and purification of gangliosides from plasma. Methods Enzymol. 1987;138:300–306. doi: 10.1016/0076-6879(87)38025-5. [DOI] [PubMed] [Google Scholar]
  28. Ledeen R. W., Yu R. K. Gangliosides: structure, isolation, and analysis. Methods Enzymol. 1982;83:139–191. doi: 10.1016/0076-6879(82)83012-7. [DOI] [PubMed] [Google Scholar]
  29. Lis H., Sharon N. The biochemistry of plant lectins (phytohemagglutinins). Annu Rev Biochem. 1973;42(0):541–574. doi: 10.1146/annurev.bi.42.070173.002545. [DOI] [PubMed] [Google Scholar]
  30. Lotan R., Sharon N. Peanut (Arachis hypogaea) agglutinin. Methods Enzymol. 1978;50:361–367. doi: 10.1016/0076-6879(78)50043-8. [DOI] [PubMed] [Google Scholar]
  31. Magnani J. L., Spitalnik S. L., Ginsburg V. Antibodies against cell surface carbohydrates: determination of antigen structure. Methods Enzymol. 1987;138:195–207. doi: 10.1016/0076-6879(87)38016-4. [DOI] [PubMed] [Google Scholar]
  32. Mapoles J. E., Krah D. L., Crowell R. L. Purification of a HeLa cell receptor protein for group B coxsackieviruses. J Virol. 1985 Sep;55(3):560–566. doi: 10.1128/jvi.55.3.560-566.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Markwell M. A., Svennerholm L., Paulson J. C. Specific gangliosides function as host cell receptors for Sendai virus. Proc Natl Acad Sci U S A. 1981 Sep;78(9):5406–5410. doi: 10.1073/pnas.78.9.5406. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Matlin K. S., Reggio H., Helenius A., Simons K. Infectious entry pathway of influenza virus in a canine kidney cell line. J Cell Biol. 1981 Dec;91(3 Pt 1):601–613. doi: 10.1083/jcb.91.3.601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Matsumoto I., Osawa T. Purification and characterization of a Cytisus-type Anti-H(O) phytohemagglutinin from Ulex europeus seeds. Arch Biochem Biophys. 1970 Oct;140(2):484–491. doi: 10.1016/0003-9861(70)90092-5. [DOI] [PubMed] [Google Scholar]
  36. Miller R. L., Collawn J. F., Jr, Fish W. W. Purification and macromolecular properties of a sialic acid-specific lectin from the slug Limax flavus. J Biol Chem. 1982 Jul 10;257(13):7574–7580. [PubMed] [Google Scholar]
  37. Miller R. L. Properties of a sialic acid-specific lectin from the slug Limax flavus. Methods Enzymol. 1987;138:527–536. doi: 10.1016/0076-6879(87)38047-4. [DOI] [PubMed] [Google Scholar]
  38. Minamishima Y. Immunoprophylaxis of experimental cytomegalovirus infection. Ann Microbiol (Paris) 1977 Oct;128(3):399–407. [PubMed] [Google Scholar]
  39. Nagata Y., Burger M. M. Wheat germ agglutinin. Molecular characteristics and specificity for sugar binding. J Biol Chem. 1974 May 25;249(10):3116–3122. [PubMed] [Google Scholar]
  40. Nemerow G. R., Wolfert R., McNaughton M. E., Cooper N. R. Identification and characterization of the Epstein-Barr virus receptor on human B lymphocytes and its relationship to the C3d complement receptor (CR2). J Virol. 1985 Aug;55(2):347–351. doi: 10.1128/jvi.55.2.347-351.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Neurath A. R., Kent S. B., Strick N., Parker K. Identification and chemical synthesis of a host cell receptor binding site on hepatitis B virus. Cell. 1986 Aug 1;46(3):429–436. doi: 10.1016/0092-8674(86)90663-x. [DOI] [PubMed] [Google Scholar]
  42. Osborn J. E., Walker D. L. Virulence and attenuation of murine cytomegalovirus. Infect Immun. 1971 Feb;3(2):228–236. doi: 10.1128/iai.3.2.228-236.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Peters B. P., Ebisu S., Goldstein I. J., Flashner M. Interaction of wheat germ agglutinin with sialic acid. Biochemistry. 1979 Nov 27;18(24):5505–5511. doi: 10.1021/bi00591a038. [DOI] [PubMed] [Google Scholar]
  44. Ravindranath M. H., Higa H. H., Cooper E. L., Paulson J. C. Purification and characterization of an O-acetylsialic acid-specific lectin from a marine crab Cancer antennarius. J Biol Chem. 1985 Jul 25;260(15):8850–8856. [PubMed] [Google Scholar]
  45. Reeke G. N., Jr, Becker J. W., Cunningham B. A., Gunther G. R., Wang J. L., Edelman G. M. Relationships between the structure and activities of concanavalin A. Ann N Y Acad Sci. 1974;234(0):369–382. doi: 10.1111/j.1749-6632.1974.tb53049.x. [DOI] [PubMed] [Google Scholar]
  46. Rogers G. N., Paulson J. C., Daniels R. S., Skehel J. J., Wilson I. A., Wiley D. C. Single amino acid substitutions in influenza haemagglutinin change receptor binding specificity. Nature. 1983 Jul 7;304(5921):76–78. doi: 10.1038/304076a0. [DOI] [PubMed] [Google Scholar]
  47. Rogers G. N., Paulson J. C. Receptor determinants of human and animal influenza virus isolates: differences in receptor specificity of the H3 hemagglutinin based on species of origin. Virology. 1983 Jun;127(2):361–373. doi: 10.1016/0042-6822(83)90150-2. [DOI] [PubMed] [Google Scholar]
  48. SVENNERHOLM L. THE GANGLIOSIDES. J Lipid Res. 1964 Apr;5:145–155. [PubMed] [Google Scholar]
  49. Saito M., Kasai N., Yu R. K. In situ immunological determination of basic carbohydrate structures of gangliosides on thin-layer plates. Anal Biochem. 1985 Jul;148(1):54–58. doi: 10.1016/0003-2697(85)90627-x. [DOI] [PubMed] [Google Scholar]
  50. Seyfried T. N., Yu R. K., Saito M., Albert M. Ganglioside composition of an experimental mouse brain tumor. Cancer Res. 1987 Jul 1;47(13):3538–3542. [PubMed] [Google Scholar]
  51. Shibuya N., Goldstein I. J., Broekaert W. F., Nsimba-Lubaki M., Peeters B., Peumans W. J. The elderberry (Sambucus nigra L.) bark lectin recognizes the Neu5Ac(alpha 2-6)Gal/GalNAc sequence. J Biol Chem. 1987 Feb 5;262(4):1596–1601. [PubMed] [Google Scholar]
  52. Sugano K., Saito M., Nagai Y. Susceptibility of ganglioside GM1 to a new bacterial neuraminidase. FEBS Lett. 1978 May 15;89(2):321–325. doi: 10.1016/0014-5793(78)80246-4. [DOI] [PubMed] [Google Scholar]
  53. Taylor H. P., Cooper N. R. Human cytomegalovirus binding to fibroblasts is receptor mediated. J Virol. 1989 Sep;63(9):3991–3998. doi: 10.1128/jvi.63.9.3991-3998.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Tomassini J. E., Colonno R. J. Isolation of a receptor protein involved in attachment of human rhinoviruses. J Virol. 1986 May;58(2):290–295. doi: 10.1128/jvi.58.2.290-295.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Waxdal M. J. Pokeweed mitogens. Methods Enzymol. 1978;50:354–361. doi: 10.1016/0076-6879(78)50042-6. [DOI] [PubMed] [Google Scholar]
  56. WuDunn D., Spear P. G. Initial interaction of herpes simplex virus with cells is binding to heparan sulfate. J Virol. 1989 Jan;63(1):52–58. doi: 10.1128/jvi.63.1.52-58.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Yamashita K., Totani K., Ohkura T., Takasaki S., Goldstein I. J., Kobata A. Carbohydrate binding properties of complex-type oligosaccharides on immobilized Datura stramonium lectin. J Biol Chem. 1987 Feb 5;262(4):1602–1607. [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES