Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1971 Jun;106(3):802–807. doi: 10.1128/jb.106.3.802-807.1971

Effects of pH on Transformation of Bacillus subtilis with Single-Stranded Deoxyribonucleic Acid

Mary J Tevethia 1, M Mandel 1
PMCID: PMC248695  PMID: 4997538

Abstract

Variation in frequencies of transformation mediated by native and single-stranded DNA and its dependence on pH of the medium were investigated. The results indicate that the biological activity of deoxyribonucleic acid (DNA) of both configurations assayed in the presence of ethylenediaminetetraacetic acid (EDTA) increases as the pH of the transformation mixture is lowered from 7.7 to a maximum transformation frequency near pH 6.1. At this lower pH, native DNA transforms equally in medium with and without EDTA, and single-stranded DNA is 0.4 to 0.6 as active as native DNA in transforming Bacillus subtilis. A high efficiency of transformation with single-stranded DNA was observed for five markers in three recipient strains. The increased efficiency of native DNA appears to be caused by a lesser capacity of EDTA to bind magnesium at the lower pH. The increased efficiency of single-stranded DNA at pH below 7.0 results from decreased activity of a single-strand specific nuclease present in competent populations.

Full text

PDF
802

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anagnostopoulos C., Spizizen J. REQUIREMENTS FOR TRANSFORMATION IN BACILLUS SUBTILIS. J Bacteriol. 1961 May;81(5):741–746. doi: 10.1128/jb.81.5.741-746.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chilton M. D., Hall B. D. Transforming activity in single-stranded DNA from Bacillus subtilis. J Mol Biol. 1968 Jun 28;34(3):439–451. doi: 10.1016/0022-2836(68)90171-x. [DOI] [PubMed] [Google Scholar]
  3. Chilton M. D. Transforming Activity in Both Complementary Strands of Bacillus subtilis DNA. Science. 1967 Aug 18;157(3790):817–819. doi: 10.1126/science.157.3790.817. [DOI] [PubMed] [Google Scholar]
  4. McCarthy C., Nester E. W. Heat-activated endonuclease in Bacillus subtilis. J Bacteriol. 1969 Mar;97(3):1426–1430. doi: 10.1128/jb.97.3.1426-1430.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Postel E. H., Goodgal S. H. Uptake of "single-stranded" DNA in Hemophilus influenzae and its ability to transform. J Mol Biol. 1966 Apr;16(2):317–327. doi: 10.1016/s0022-2836(66)80175-4. [DOI] [PubMed] [Google Scholar]
  6. Tevethia M. J., Mandel M. Nature of the ethylenediaminetetraacetic acid requirement for transformation of Bacillus subtilis with single-stranded deoxyribonucleic acid. J Bacteriol. 1970 Mar;101(3):844–850. doi: 10.1128/jb.101.3.844-850.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. YOUNG F. E., SPIZIZEN J. INCORPORATION OF DEOXYRIBONUCLEIC ACID IN THE BACILLUS SUBTILIS TRANSFORMATION SYSTEM. J Bacteriol. 1963 Sep;86:392–400. doi: 10.1128/jb.86.3.392-400.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES