Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1990 Dec;64(12):5797–5803. doi: 10.1128/jvi.64.12.5797-5803.1990

Mechanism of antigenic variation in an individual epitope on influenza virus N9 neuraminidase.

G M Air 1, W G Laver 1, R G Webster 1
PMCID: PMC248733  PMID: 1700825

Abstract

Monoclonal antibodies which inhibit influenza virus neuraminidase (NA) and which therefore indirectly neutralize virus infectivity bind to epitopes located on the rim of the active-site crater. The three-dimensional structure of one of these epitopes, recognized by monoclonal antibody NC41, has previously been determined (W. R. Tulip, J. N. Varghese, R. G. Webster, G. M. Air, W. G. Laver, and P. M. Colman, Cold Spring Harbor Symp. Quant. Biol. 54:257-263, 1989). Nineteen escape mutants of influenza virus A/tern/Australia/G70c/75 (N9) NA selected with NC41 were sequenced. A surprising restriction was seen in the sequence changes involved. Ten mutants had a Ser-to-Phe change at amino acid 372, and six others had mutations at position 367. No escape mutants with changes at 369 or 370 were found, although these mutations were selected with other antibodies and rendered the epitope unrecognizable by antibody NC41. Another N9 NA, from A/ruddy turnstone/NJ/85, which differs by 14 amino acids from the tern virus NA, still bound antibody NC41. Epitope mapping by selecting multiple escape mutants with antibody NC41 thus identified only three of the five polypeptide loops on NA that contact the antibody. Escape mutants selected sequentially with three different monoclonal antibodies showed three sequence changes in two loops of the NC41 epitope. The multiple mutants were indistinguishable from wild-type virus by using polyclonal rabbit antiserum in double immunodiffusion tests, but NA inhibition titers were fourfold lower. The results suggest that although the NC41 epitope contains 22 amino acids, only a few of these are so critical to the interaction with antibody that a single sequence change allows selection of an escape mutant. In that case, the variety of amino acid sequence changes which can lead to polyclonal selection of new epidemic viruses during antigenic drift might be very limited.

Full text

PDF
5797

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Air G. M., Els M. C., Brown L. E., Laver W. G., Webster R. G. Location of antigenic sites on the three-dimensional structure of the influenza N2 virus neuraminidase. Virology. 1985 Sep;145(2):237–248. doi: 10.1016/0042-6822(85)90157-6. [DOI] [PubMed] [Google Scholar]
  2. Air G. M., Gibbs A. J., Laver W. G., Webster R. G. Evolutionary changes in influenza B are not primarily governed by antibody selection. Proc Natl Acad Sci U S A. 1990 May;87(10):3884–3888. doi: 10.1073/pnas.87.10.3884. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Air G. M., Webster R. G., Colman P. M., Laver W. G. Distribution of sequence differences in influenza N9 neuraminidase of tern and whale viruses and crystallization of the whale neuraminidase complexed with antibodies. Virology. 1987 Oct;160(2):346–354. doi: 10.1016/0042-6822(87)90005-5. [DOI] [PubMed] [Google Scholar]
  4. Amit A. G., Mariuzza R. A., Phillips S. E., Poljak R. J. Three-dimensional structure of an antigen-antibody complex at 2.8 A resolution. Science. 1986 Aug 15;233(4765):747–753. doi: 10.1126/science.2426778. [DOI] [PubMed] [Google Scholar]
  5. Amit A. G., Mariuzza R. A., Phillips S. E., Poljak R. J. Three-dimensional structure of an antigen-antibody complex at 6 A resolution. Nature. 1985 Jan 10;313(5998):156–158. doi: 10.1038/313156a0. [DOI] [PubMed] [Google Scholar]
  6. Aymard-Henry M., Coleman M. T., Dowdle W. R., Laver W. G., Schild G. C., Webster R. G. Influenzavirus neuraminidase and neuraminidase-inhibition test procedures. Bull World Health Organ. 1973;48(2):199–202. [PMC free article] [PubMed] [Google Scholar]
  7. Baker A. T., Varghese J. N., Laver W. G., Air G. M., Colman P. M. Three-dimensional structure of neuraminidase of subtype N9 from an avian influenza virus. Proteins. 1987;2(2):111–117. doi: 10.1002/prot.340020205. [DOI] [PubMed] [Google Scholar]
  8. Bossart P. J., Babu Y. S., Cook W. J., Air G. M., Laver W. G. Crystallization and preliminary X-ray analyses of two neuraminidases from influenza B virus strains B/Hong Kong/8/73 and B/Lee/40. J Biol Chem. 1988 May 5;263(13):6421–6423. [PubMed] [Google Scholar]
  9. Colman P. M., Laver W. G., Varghese J. N., Baker A. T., Tulloch P. A., Air G. M., Webster R. G. Three-dimensional structure of a complex of antibody with influenza virus neuraminidase. 1987 Mar 26-Apr 1Nature. 326(6111):358–363. doi: 10.1038/326358a0. [DOI] [PubMed] [Google Scholar]
  10. Colman P. M., Varghese J. N., Laver W. G. Structure of the catalytic and antigenic sites in influenza virus neuraminidase. Nature. 1983 May 5;303(5912):41–44. doi: 10.1038/303041a0. [DOI] [PubMed] [Google Scholar]
  11. Gorman O. T., Bean W. J., Kawaoka Y., Webster R. G. Evolution of the nucleoprotein gene of influenza A virus. J Virol. 1990 Apr;64(4):1487–1497. doi: 10.1128/jvi.64.4.1487-1497.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kida H., Kawaoka Y., Naeve C. W., Webster R. G. Antigenic and genetic conservation of H3 influenza virus in wild ducks. Virology. 1987 Jul;159(1):109–119. doi: 10.1016/0042-6822(87)90353-9. [DOI] [PubMed] [Google Scholar]
  13. Knossow M., Daniels R. S., Douglas A. R., Skehel J. J., Wiley D. C. Three-dimensional structure of an antigenic mutant of the influenza virus haemagglutinin. Nature. 1984 Oct 18;311(5987):678–680. doi: 10.1038/311678a0. [DOI] [PubMed] [Google Scholar]
  14. Laver W. G., Luo M., Bossart P. J., Babu Y. S., Smith C., Accavitti M. A., Tulloch P. A., Air G. M. Crystallization and preliminary X-ray analysis of type B influenza virus neuraminidase complexed with antibody Fab fragments. Virology. 1988 Dec;167(2):621–624. [PubMed] [Google Scholar]
  15. Lentz M. R., Air G. M., Laver W. G., Webster R. G. Sequence of the neuraminidase gene of influenza virus A/Tokyo/3/67 and previously uncharacterized monoclonal variants. Virology. 1984 May;135(1):257–265. doi: 10.1016/0042-6822(84)90135-1. [DOI] [PubMed] [Google Scholar]
  16. Lin Y. J., Luo M., Laver W. G., Air G. M., Smith C. D., Webster R. G. New crystalline forms of neuraminidase of type B human influenza virus. J Mol Biol. 1990 Aug 5;214(3):639–640. doi: 10.1016/0022-2836(90)90281-p. [DOI] [PubMed] [Google Scholar]
  17. Novotny J., Bruccoleri R. E., Saul F. A. On the attribution of binding energy in antigen-antibody complexes McPC 603, D1.3, and HyHEL-5. Biochemistry. 1989 May 30;28(11):4735–4749. doi: 10.1021/bi00437a034. [DOI] [PubMed] [Google Scholar]
  18. Padlan E. A., Silverton E. W., Sheriff S., Cohen G. H., Smith-Gill S. J., Davies D. R. Structure of an antibody-antigen complex: crystal structure of the HyHEL-10 Fab-lysozyme complex. Proc Natl Acad Sci U S A. 1989 Aug;86(15):5938–5942. doi: 10.1073/pnas.86.15.5938. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Palese P., Tobita K., Ueda M., Compans R. W. Characterization of temperature sensitive influenza virus mutants defective in neuraminidase. Virology. 1974 Oct;61(2):397–410. doi: 10.1016/0042-6822(74)90276-1. [DOI] [PubMed] [Google Scholar]
  20. Sheriff S., Silverton E. W., Padlan E. A., Cohen G. H., Smith-Gill S. J., Finzel B. C., Davies D. R. Three-dimensional structure of an antibody-antigen complex. Proc Natl Acad Sci U S A. 1987 Nov;84(22):8075–8079. doi: 10.1073/pnas.84.22.8075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Smith-Gill S. J., Wilson A. C., Potter M., Prager E. M., Feldmann R. J., Mainhart C. R. Mapping the antigenic epitope for a monoclonal antibody against lysozyme. J Immunol. 1982 Jan;128(1):314–322. [PubMed] [Google Scholar]
  22. Tulip W. R., Varghese J. N., Webster R. G., Air G. M., Laver W. G., Colman P. M. Crystal structures of neuraminidase-antibody complexes. Cold Spring Harb Symp Quant Biol. 1989;54(Pt 1):257–263. doi: 10.1101/sqb.1989.054.01.032. [DOI] [PubMed] [Google Scholar]
  23. Varghese J. N., Laver W. G., Colman P. M. Structure of the influenza virus glycoprotein antigen neuraminidase at 2.9 A resolution. Nature. 1983 May 5;303(5912):35–40. doi: 10.1038/303035a0. [DOI] [PubMed] [Google Scholar]
  24. Varghese J. N., Webster R. G., Laver W. G., Colman P. M. Structure of an escape mutant of glycoprotein N2 neuraminidase of influenza virus A/Tokyo/3/67 at 3 A. J Mol Biol. 1988 Mar 5;200(1):201–203. doi: 10.1016/0022-2836(88)90344-0. [DOI] [PubMed] [Google Scholar]
  25. Webster R. G., Air G. M., Metzger D. W., Colman P. M., Varghese J. N., Baker A. T., Laver W. G. Antigenic structure and variation in an influenza virus N9 neuraminidase. J Virol. 1987 Sep;61(9):2910–2916. doi: 10.1128/jvi.61.9.2910-2916.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Webster R. G., Brown L. E., Laver W. G. Antigenic and biological characterization of influenza virus neuraminidase (N2) with monoclonal antibodies. Virology. 1984 May;135(1):30–42. doi: 10.1016/0042-6822(84)90114-4. [DOI] [PubMed] [Google Scholar]
  27. Webster R. G., Hinshaw V. S., Laver W. G. Selection and analysis of antigenic variants of the neuraminidase of N2 influenza viruses with monoclonal antibodies. Virology. 1982 Feb;117(1):93–104. doi: 10.1016/0042-6822(82)90510-4. [DOI] [PubMed] [Google Scholar]
  28. Webster R. G., Laver W. G. Determination of the number of nonoverlapping antigenic areas on Hong Kong (H3N2) influenza virus hemagglutinin with monoclonal antibodies and the selection of variants with potential epidemiological significance. Virology. 1980 Jul 15;104(1):139–148. doi: 10.1016/0042-6822(80)90372-4. [DOI] [PubMed] [Google Scholar]
  29. Webster R. G., Reay P. A., Laver W. G. Protection against lethal influenza with neuraminidase. Virology. 1988 May;164(1):230–237. doi: 10.1016/0042-6822(88)90640-x. [DOI] [PubMed] [Google Scholar]
  30. Weis W., Brown J. H., Cusack S., Paulson J. C., Skehel J. J., Wiley D. C. Structure of the influenza virus haemagglutinin complexed with its receptor, sialic acid. Nature. 1988 Jun 2;333(6172):426–431. doi: 10.1038/333426a0. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES