Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1990 Jan;64(1):120–124. doi: 10.1128/jvi.64.1.120-124.1990

Sequence analysis of gene 11 equivalents from "short" and "super short" strains of rotavirus.

S M Matsui 1, E R Mackow 1, S Matsuno 1, P S Paul 1, H B Greenberg 1
PMCID: PMC249061  PMID: 2152809

Abstract

The molecular basis for the aberrant migration pattern of the gene 11 equivalent in rotaviruses with "short" (human DS-1) and "super short" (human 69M and bovine VMRI) electropherotypes was investigated. The mRNAs of these viruses were synthesized in vitro, and the entire gene 11 equivalent of each of these viruses was sequenced with specific synthetic oligonucleotide primers. These sequences were compared with previously published sequences of "long" pattern rotavirus gene 11 segments. The increased lengths of the gene 11 equivalents of DS-1, 69M, and VMRI are due to a prolonged, 3' untranslated region in this gene segment. The 3' untranslated region of the VMRI gene 11 equivalent contains a clear duplication of a portion of its coding sequence. A stretch of 18 consecutive nucleotides within the 330-nucleotide, 3' untranslated region of 69M is identical to a section of UK coding sequence. The DS-1 and the remainder of the 69M 3'-end additional sequences are similar to each other, but neither is similar to any other currently available rotavirus gene sequence. This finding suggests that a process other than homologous duplication is involved in the evolution of these sequences. The widespread occurrence of human and animal rotaviruses with short and super short electropherotypes provides evidence that intragenic and possibly intergenic recombinational events associated with an error-prone viral RNA polymerase may play a role in increasing the genetic repertoire of rotaviruses.

Full text

PDF
120

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albert M. J., Unicomb L. E., Bishop R. F. Cultivation and characterization of human rotaviruses with "super short" RNA patterns. J Clin Microbiol. 1987 Jan;25(1):183–185. doi: 10.1128/jcm.25.1.183-185.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Arias C. F., López S., Espejo R. T. Gene protein products of SA11 simian rotavirus genome. J Virol. 1982 Jan;41(1):42–50. doi: 10.1128/jvi.41.1.42-50.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bellinzoni R. C., Mattion N. M., Burrone O., Gonzalez A., La Torre J. L., Scodeller E. A. Isolation of group A swine rotaviruses displaying atypical electropherotypes. J Clin Microbiol. 1987 May;25(5):952–954. doi: 10.1128/jcm.25.5.952-954.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Besselaar T. G., Rosenblatt A., Kidd A. H. Atypical rotavirus from South African neonates. Brief report. Arch Virol. 1986;87(3-4):327–330. doi: 10.1007/BF01315311. [DOI] [PubMed] [Google Scholar]
  5. Dyall-Smith M. L., Holmes I. H. Gene-coding assignments of rotavirus double-stranded RNA segments 10 and 11. J Virol. 1981 Jun;38(3):1099–1103. doi: 10.1128/jvi.38.3.1099-1103.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ericson B. L., Graham D. Y., Mason B. B., Estes M. K. Identification, synthesis, and modifications of simian rotavirus SA11 polypeptides in infected cells. J Virol. 1982 Jun;42(3):825–839. doi: 10.1128/jvi.42.3.825-839.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Espejo R. T., Calderon E., Gonzalez N. Distinct reovirus-like agents associated with acute infantile gastroenteritis. J Clin Microbiol. 1977 Nov;6(5):502–506. doi: 10.1128/jcm.6.5.502-506.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Flores J., Myslinski J., Kalica A. R., Greenberg H. B., Wyatt R. G., Kapikian A. Z., Chanock R. M. In vitro transcription of two human rotaviruses. J Virol. 1982 Sep;43(3):1032–1037. doi: 10.1128/jvi.43.3.1032-1037.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. González S. A., Mattion N. M., Bellinzoni R., Burrone O. R. Structure of rearranged genome segment 11 in two different rotavirus strains generated by a similar mechanism. J Gen Virol. 1989 Jun;70(Pt 6):1329–1336. doi: 10.1099/0022-1317-70-6-1329. [DOI] [PubMed] [Google Scholar]
  10. Gorziglia M., Nishikawa K., Fukuhara N. Evidence of duplication and deletion in super short segment 11 of rabbit rotavirus Alabama strain. Virology. 1989 Jun;170(2):587–590. doi: 10.1016/0042-6822(89)90453-4. [DOI] [PubMed] [Google Scholar]
  11. Hasegawa A., Inouye S., Matsuno S., Yamaoka K., Eko R., Suharyono W. Isolation of human rotaviruses with a distinct RNA electrophoretic pattern from Indonesia. Microbiol Immunol. 1984;28(6):719–722. doi: 10.1111/j.1348-0421.1984.tb00726.x. [DOI] [PubMed] [Google Scholar]
  12. Holland J., Spindler K., Horodyski F., Grabau E., Nichol S., VandePol S. Rapid evolution of RNA genomes. Science. 1982 Mar 26;215(4540):1577–1585. doi: 10.1126/science.7041255. [DOI] [PubMed] [Google Scholar]
  13. Hundley F., Biryahwaho B., Gow M., Desselberger U. Genome rearrangements of bovine rotavirus after serial passage at high multiplicity of infection. Virology. 1985 May;143(1):88–103. doi: 10.1016/0042-6822(85)90099-6. [DOI] [PubMed] [Google Scholar]
  14. Hundley F., McIntyre M., Clark B., Beards G., Wood D., Chrystie I., Desselberger U. Heterogeneity of genome rearrangements in rotaviruses isolated from a chronically infected immunodeficient child. J Virol. 1987 Nov;61(11):3365–3372. doi: 10.1128/jvi.61.11.3365-3372.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Imai M., Richardson M. A., Ikegami N., Shatkin A. J., Furuichi Y. Molecular cloning of double-stranded RNA virus genomes. Proc Natl Acad Sci U S A. 1983 Jan;80(2):373–377. doi: 10.1073/pnas.80.2.373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kalica A. R., Sereno M. M., Wyatt R. G., Mebus C. A., Chanock R. M., Kapikian A. Z. Comparison of human and animal rotavirus strains by gel electrophoresis of viral RNA. Virology. 1978 Jun 15;87(2):247–255. doi: 10.1016/0042-6822(78)90130-7. [DOI] [PubMed] [Google Scholar]
  17. Lazzarini R. A., Keene J. D., Schubert M. The origins of defective interfering particles of the negative-strand RNA viruses. Cell. 1981 Oct;26(2 Pt 2):145–154. doi: 10.1016/0092-8674(81)90298-1. [DOI] [PubMed] [Google Scholar]
  18. Mackow E. R., Shaw R. D., Matsui S. M., Vo P. T., Dang M. N., Greenberg H. B. The rhesus rotavirus gene encoding protein VP3: location of amino acids involved in homologous and heterologous rotavirus neutralization and identification of a putative fusion region. Proc Natl Acad Sci U S A. 1988 Feb;85(3):645–649. doi: 10.1073/pnas.85.3.645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Matsuno S., Hasegawa A., Kalica A. R., Kono R. Isolation of a recombinant between simian and bovine rotaviruses. J Gen Virol. 1980 May;48(1):253–256. doi: 10.1099/0022-1317-48-1-253. [DOI] [PubMed] [Google Scholar]
  20. Mattion N., González S. A., Burrone O., Bellinzoni R., La Torre J. L., Scodeller E. A. Rearrangement of genomic segment 11 in two swine rotavirus strains. J Gen Virol. 1988 Mar;69(Pt 3):695–698. doi: 10.1099/0022-1317-69-3-695. [DOI] [PubMed] [Google Scholar]
  21. Mitchell D. B., Both G. W. Simian rotavirus SA11 segment 11 contains overlapping reading frames. Nucleic Acids Res. 1988 Jul 11;16(13):6244–6244. doi: 10.1093/nar/16.13.6244. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Nuttall S. D., Hum C. P., Holmes I. H., Dyall-Smith M. L. Sequences of VP9 genes from short and supershort rotavirus strains. Virology. 1989 Aug;171(2):453–457. doi: 10.1016/0042-6822(89)90614-4. [DOI] [PubMed] [Google Scholar]
  23. Paul P. S., Lyoo Y. S., Woode G. N., Zheng S. L., Greenberg H. B., Matsui S., Schwartz K. J., Hill H. T. Isolation of a bovine rotavirus with a "super-short" RNA electrophoretic pattern from a calf with diarrhea. J Clin Microbiol. 1988 Oct;26(10):2139–2143. doi: 10.1128/jcm.26.10.2139-2143.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Pedley S., Hundley F., Chrystie I., McCrae M. A., Desselberger U. The genomes of rotaviruses isolated from chronically infected immunodeficient children. J Gen Virol. 1984 Jul;65(Pt 7):1141–1150. doi: 10.1099/0022-1317-65-7-1141. [DOI] [PubMed] [Google Scholar]
  25. Pocock D. H. Isolation and characterization of two group A rotaviruses with unusual genome profiles. J Gen Virol. 1987 Mar;68(Pt 3):653–660. doi: 10.1099/0022-1317-68-3-653. [DOI] [PubMed] [Google Scholar]
  26. Shaw R. D., Stoner-Ma D. L., Estes M. K., Greenberg H. B. Specific enzyme-linked immunoassay for rotavirus serotypes 1 and 3. J Clin Microbiol. 1985 Aug;22(2):286–291. doi: 10.1128/jcm.22.2.286-291.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Spaan W., Cavanagh D., Horzinek M. C. Coronaviruses: structure and genome expression. J Gen Virol. 1988 Dec;69(Pt 12):2939–2952. doi: 10.1099/0022-1317-69-12-2939. [DOI] [PubMed] [Google Scholar]
  28. Thouless M. E., DiGiacomo R. F., Neuman D. S. Isolation of two lapine rotaviruses: characterization of their subgroup, serotype and RNA electropherotypes. Arch Virol. 1986;89(1-4):161–170. doi: 10.1007/BF01309886. [DOI] [PubMed] [Google Scholar]
  29. Ward C. W., Azad A. A., Dyall-Smith M. L. Structural homologies between RNA gene segments 10 and 11 from UK bovine, simian SA11, and human Wa rotaviruses. Virology. 1985 Jul 30;144(2):328–336. doi: 10.1016/0042-6822(85)90275-2. [DOI] [PubMed] [Google Scholar]
  30. Zweerink H. J., Joklik W. K. Studies on the intracellular synthesis of reovirus-specified proteins. Virology. 1970 Jul;41(3):501–518. doi: 10.1016/0042-6822(70)90171-6. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES