Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1990 Jan;64(1):231–238. doi: 10.1128/jvi.64.1.231-238.1990

Molecular and biological properties of c-mil transducing retroviruses generated during passage of Rous-associated virus type 1 in chicken neuroretina cells.

A Eychène 1, C Béchade 1, M Marx 1, D Laugier 1, P Dezélée 1, G Calothy 1
PMCID: PMC249095  PMID: 2152814

Abstract

IC1, IC2, and IC3 are novel c-mil transducing retroviruses generated during serial passaging of Rous-associated virus type 1 (RAV-1) in chicken embryo neuroretina cells. They were isolated by their ability to induce proliferation of these nondividing cells. IC2 and IC3 were generated during early passages of RAV-1 in neuroretina cells, whereas IC1 was isolated after six consecutive passages of virus supernatants. We sequenced the transduced genes and the mil-RAV-1 junctions of the three viruses. The 5' RAV-1-mil junction of IC2 and IC3 was formed by a splicing process between the RAV-1 leader sequence and exon 8 of the c-mil gene. The 5' end of IC1 resulted from homologous recombination between gag and mil sequences. Reconstitution experiments showed that serial passaging of IC2 in neuroretina cells also led to the formation of a gag-mil-containing retrovirus. Therefore, constitution of a U5-leader-delta c-mil-delta RAV-1-U3 virus represents early steps in c-mil transduction by RAV-1. This virus further recombined with RAV-1 to generate a gag-mil-containing virus. The three IC viruses transduced the serine/threonine kinase domain of the cellular gene. Hence, amino-terminal truncation is sufficient to activate the mitogenic property of c-mil. Comparison of the transforming properties of IC2 and IC1 showed that the transduced mil gene, expressed as a unique protein independent of gag sequences, was weakly transforming in avian cells. Acquisition of gag sequences by IC1 not only increased the rate of virus replication but also enhanced the transforming capacity of the virus.

Full text

PDF
231

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arrigo S., Yun M., Beemon K. cis-acting regulatory elements within gag genes of avian retroviruses. Mol Cell Biol. 1987 Jan;7(1):388–397. doi: 10.1128/mcb.7.1.388. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bechade C., Calothy G., Pessac B., Martin P., Coll J., Denhez F., Saule S., Ghysdael J., Stéhelin D. Induction of proliferation or transformation of neuroretina cells by the mil and myc viral oncogenes. Nature. 1985 Aug 8;316(6028):559–562. doi: 10.1038/316559a0. [DOI] [PubMed] [Google Scholar]
  3. Bishop J. M. Cellular oncogenes and retroviruses. Annu Rev Biochem. 1983;52:301–354. doi: 10.1146/annurev.bi.52.070183.001505. [DOI] [PubMed] [Google Scholar]
  4. Bonner T. I., Oppermann H., Seeburg P., Kerby S. B., Gunnell M. A., Young A. C., Rapp U. R. The complete coding sequence of the human raf oncogene and the corresponding structure of the c-raf-1 gene. Nucleic Acids Res. 1986 Jan 24;14(2):1009–1015. doi: 10.1093/nar/14.2.1009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bova C. A., Olsen J. C., Swanstrom R. The avian retrovirus env gene family: molecular analysis of host range and antigenic variants. J Virol. 1988 Jan;62(1):75–83. doi: 10.1128/jvi.62.1.75-83.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Béchade C., Dambrine G., David-Pfeuty T., Esnault E., Calothy G. Transformed and tumorigenic phenotypes induced by avian retroviruses containing the v-mil oncogene. J Virol. 1988 Apr;62(4):1211–1218. doi: 10.1128/jvi.62.4.1211-1218.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Coll J., Righi M., Taisne C., Dissous C., Gegonne A., Stehelin D. Molecular cloning of the avian acute transforming retrovirus MH2 reveals a novel cell-derived sequence (v-mil) in addition to the myc oncogene. EMBO J. 1983;2(12):2189–2194. doi: 10.1002/j.1460-2075.1983.tb01722.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Darlix J. L., Spahr P. F., Bromley P. A., Jaton J. C. In vitro, the major ribosome binding site on Rous sarcoma virus RNA does not contain the nucleotide sequence coding for the N-terminal amino acids of the gag gene product. J Virol. 1979 Feb;29(2):597–611. doi: 10.1128/jvi.29.2.597-611.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Denhez F., Heimann B., d'Auriol L., Graf T., Coquillaud M., Coll J., Galibert F., Moelling K., Stehelin D., Ghysdael J. Replacement of lys 622 in the ATP binding domain of P100gag-mil abolishes the in vitro autophosphorylation of the protein and the biological properties of the v-mil oncogene of MH2 virus. EMBO J. 1988 Feb;7(2):541–546. doi: 10.1002/j.1460-2075.1988.tb02843.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dozier C., Denhez F., Coll J., Amouyel P., Quatannens B., Begue A., Stehelin D., Saule S. Induction of proliferation of neuroretina cells by long terminal repeat activation of the carboxy-terminal part of c-mil. Mol Cell Biol. 1987 May;7(5):1995–1998. doi: 10.1128/mcb.7.5.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Eychène A., Marx M., Dezélée P., Calothy G. Complete nucleotide sequence of IC10, a retrovirus containing the Rmil oncogene transduced in chicken neuroretina cells infected with avian retrovirus RAV-1. Nucleic Acids Res. 1989 Feb 11;17(3):1250–1250. doi: 10.1093/nar/17.3.1250. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fukui M., Yamamoto T., Kawai S., Mitsunobu F., Toyoshima K. Molecular cloning and characterization of an activated human c-raf-1 gene. Mol Cell Biol. 1987 May;7(5):1776–1781. doi: 10.1128/mcb.7.5.1776. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Geryk J., Dezélée P., Barnier J. V., Svoboda J., Nehyba J., Karakoz I., Rynditch A. V., Yatsula B. A., Calothy G. Transduction of the cellular src gene and 3' adjacent sequences in avian sarcoma virus PR2257. J Virol. 1989 Feb;63(2):481–492. doi: 10.1128/jvi.63.2.481-492.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Goodwin R. G., Rottman F. M., Callaghan T., Kung H. J., Maroney P. A., Nilsen T. W. c-erbB activation in avian leukosis virus-induced erythroblastosis: multiple epidermal growth factor receptor mRNAs are generated by alternative RNA processing. Mol Cell Biol. 1986 Sep;6(9):3128–3133. doi: 10.1128/mcb.6.9.3128. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Graham F. L., van der Eb A. J. A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology. 1973 Apr;52(2):456–467. doi: 10.1016/0042-6822(73)90341-3. [DOI] [PubMed] [Google Scholar]
  16. Gross-Bellard M., Oudet P., Chambon P. Isolation of high-molecular-weight DNA from mammalian cells. Eur J Biochem. 1973 Jul 2;36(1):32–38. doi: 10.1111/j.1432-1033.1973.tb02881.x. [DOI] [PubMed] [Google Scholar]
  17. Hackett P. B., Swanstrom R., Varmus H. E., Bishop J. M. The leader sequence of the subgenomic mRNA's of Rous sarcoma virus is approximately 390 nucleotides. J Virol. 1982 Feb;41(2):527–534. doi: 10.1128/jvi.41.2.527-534.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Harada F., Sawyer R. C., Dahlberg J. E. A primer ribonucleic acid for initiation of in vitro Rous sarcarcoma virus deoxyribonucleic acid synthesis. J Biol Chem. 1975 May 10;250(9):3487–3497. [PubMed] [Google Scholar]
  19. Herman S. A., Coffin J. M. Efficient packaging of readthrough RNA in ALV: implications for oncogene transduction. Science. 1987 May 15;236(4803):845–848. doi: 10.1126/science.3033828. [DOI] [PubMed] [Google Scholar]
  20. Hihara H., Yamamoto H., Shimohira H., Arai K., Shimizu T. Avian erythroblastosis virus isolated from chick erythroblastosis induced by lymphatic leukemia virus subgroup A. J Natl Cancer Inst. 1983 May;70(5):891–897. [PubMed] [Google Scholar]
  21. Ikawa S., Hagino-Yamagishi K., Kawai S., Yamamoto T., Toyoshima K. Activation of the cellular src gene by transducing retrovirus. Mol Cell Biol. 1986 Jul;6(7):2420–2428. doi: 10.1128/mcb.6.7.2420. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Ishikawa F., Takaku F., Nagao M., Sugimura T. Rat c-raf oncogene activation by a rearrangement that produces a fused protein. Mol Cell Biol. 1987 Mar;7(3):1226–1232. doi: 10.1128/mcb.7.3.1226. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Jansen H. W., Bister K. Nucleotide sequence analysis of the chicken gene c-mil, the progenitor of the retroviral oncogene v-mil. Virology. 1985 Jun;143(2):359–367. doi: 10.1016/0042-6822(85)90376-9. [DOI] [PubMed] [Google Scholar]
  24. Katz R. A., Terry R. W., Skalka A. M. A conserved cis-acting sequence in the 5' leader of avian sarcoma virus RNA is required for packaging. J Virol. 1986 Jul;59(1):163–167. doi: 10.1128/jvi.59.1.163-167.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Koenen M., Sippel A. E., Trachmann C., Bister K. Primary structure of the chicken c-mil protein:identification of domains shared with or absent from the retroviral v-mil protein. Oncogene. 1988 Feb;2(2):179–185. [PubMed] [Google Scholar]
  26. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  27. Martin P., Henry C., Denhez F., Amouyel P., Bechade C., Calothy G., Debuire B., Stehelin D., Saule S. Characterization of a MH2 mutant lacking the v-myc oncogene. Virology. 1986 Sep;153(2):272–279. doi: 10.1016/0042-6822(86)90030-9. [DOI] [PubMed] [Google Scholar]
  28. Marx M., Crisanti P., Eychène A., Béchade C., Laugier D., Ghysdaël J., Pessac B., Calothy G. Activation and transduction of c-mil sequences in chicken neuroretina cells induced to proliferate by infection with avian lymphomatosis virus. J Virol. 1988 Dec;62(12):4627–4633. doi: 10.1128/jvi.62.12.4627-4633.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Marx M., Eychène A., Laugier D., Béchade C., Crisanti P., Dezélée P., Pessac B., Calothy G. A novel oncogene related to c-mil is transduced in chicken neuroretina cells induced to proliferate by infection with an avian lymphomatosis virus. EMBO J. 1988 Nov;7(11):3369–3373. doi: 10.1002/j.1460-2075.1988.tb03209.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Messing J., Vieira J. A new pair of M13 vectors for selecting either DNA strand of double-digest restriction fragments. Gene. 1982 Oct;19(3):269–276. doi: 10.1016/0378-1119(82)90016-6. [DOI] [PubMed] [Google Scholar]
  31. Miles B. D., Robinson H. L. High-frequency transduction of c-erbB in avian leukosis virus-induced erythroblastosis. J Virol. 1985 May;54(2):295–303. doi: 10.1128/jvi.54.2.295-303.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Mount S. M. A catalogue of splice junction sequences. Nucleic Acids Res. 1982 Jan 22;10(2):459–472. doi: 10.1093/nar/10.2.459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Mölders H., Defesche J., Müller D., Bonner T. I., Rapp U. R., Müller R. Integration of transfected LTR sequences into the c-raf proto-oncogene: activation by promoter insertion. EMBO J. 1985 Mar;4(3):693–698. doi: 10.1002/j.1460-2075.1985.tb03685.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Neel B. G., Wang L. H., Mathey-Prevot B., Hanafusa T., Hanafusa H., Hayward W. S. Isolation of 16L virus: a rapidly transforming sarcoma virus from an avian leukosis virus-induced sarcoma. Proc Natl Acad Sci U S A. 1982 Aug;79(16):5088–5092. doi: 10.1073/pnas.79.16.5088. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Nishizawa M., Goto N., Kawai S. An avian transforming retrovirus isolated from a nephroblastoma that carries the fos gene as the oncogene. J Virol. 1987 Dec;61(12):3733–3740. doi: 10.1128/jvi.61.12.3733-3740.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Pessac B., Calothy G. Transformation of chick embryo neuroretinal cells by Rous sarcoma virus in vitro: induction of cell proliferation. Science. 1974 Aug;185(4152):709–710. doi: 10.1126/science.185.4152.709. [DOI] [PubMed] [Google Scholar]
  37. Pugatsch T., Stacey D. W. Identification of a sequence likely to be required for avian retroviral packaging. Virology. 1983 Jul 30;128(2):505–511. doi: 10.1016/0042-6822(83)90279-9. [DOI] [PubMed] [Google Scholar]
  38. Rapp U. R., Goldsborough M. D., Mark G. E., Bonner T. I., Groffen J., Reynolds F. H., Jr, Stephenson J. R. Structure and biological activity of v-raf, a unique oncogene transduced by a retrovirus. Proc Natl Acad Sci U S A. 1983 Jul;80(14):4218–4222. doi: 10.1073/pnas.80.14.4218. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Rigby P. W., Dieckmann M., Rhodes C., Berg P. Labeling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. J Mol Biol. 1977 Jun 15;113(1):237–251. doi: 10.1016/0022-2836(77)90052-3. [DOI] [PubMed] [Google Scholar]
  40. Sanger F. Determination of nucleotide sequences in DNA. Science. 1981 Dec 11;214(4526):1205–1210. doi: 10.1126/science.7302589. [DOI] [PubMed] [Google Scholar]
  41. Schwartz D. E., Tizard R., Gilbert W. Nucleotide sequence of Rous sarcoma virus. Cell. 1983 Mar;32(3):853–869. doi: 10.1016/0092-8674(83)90071-5. [DOI] [PubMed] [Google Scholar]
  42. Shimizu K., Nakatsu Y., Sekiguchi M., Hokamura K., Tanaka K., Terada M., Sugimura T. Molecular cloning of an activated human oncogene, homologous to v-raf, from primary stomach cancer. Proc Natl Acad Sci U S A. 1985 Sep;82(17):5641–5645. doi: 10.1073/pnas.82.17.5641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]
  44. Stanton V. P., Jr, Cooper G. M. Activation of human raf transforming genes by deletion of normal amino-terminal coding sequences. Mol Cell Biol. 1987 Mar;7(3):1171–1179. doi: 10.1128/mcb.7.3.1171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Stehelin D., Varmus H. E., Bishop J. M., Vogt P. K. DNA related to the transforming gene(s) of avian sarcoma viruses is present in normal avian DNA. Nature. 1976 Mar 11;260(5547):170–173. doi: 10.1038/260170a0. [DOI] [PubMed] [Google Scholar]
  46. Sutrave P., Bonner T. I., Rapp U. R., Jansen H. W., Patschinsky T., Bister K. Nucleotide sequence of avian retroviral oncogene v-mil: homologue of murine retroviral oncogene v-raf. Nature. 1984 May 3;309(5963):85–88. doi: 10.1038/309085a0. [DOI] [PubMed] [Google Scholar]
  47. Swanstrom R., Parker R. C., Varmus H. E., Bishop J. M. Transduction of a cellular oncogene: the genesis of Rous sarcoma virus. Proc Natl Acad Sci U S A. 1983 May;80(9):2519–2523. doi: 10.1073/pnas.80.9.2519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Tahira T., Ochiai M., Hayashi K., Nagao M., Sugimura T. Activation of human c-raf-1 by replacing the N-terminal region with different sequences. Nucleic Acids Res. 1987 Jun 25;15(12):4809–4820. doi: 10.1093/nar/15.12.4809. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Wahl G. M., Stern M., Stark G. R. Efficient transfer of large DNA fragments from agarose gels to diazobenzyloxymethyl-paper and rapid hybridization by using dextran sulfate. Proc Natl Acad Sci U S A. 1979 Aug;76(8):3683–3687. doi: 10.1073/pnas.76.8.3683. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES