Skip to main content
Bulletin of the World Health Organization logoLink to Bulletin of the World Health Organization
. 1988;66(4):485–490.

Field application of a colorimetric method of assaying chloroquine and desethylchloroquine in urine

R W Steketee, D L Mount, L C Patchen, S B Williams, F C Churchill, J M Roberts, D C O Kaseje, A D Brandling-Bennett
PMCID: PMC2491158  PMID: 3262448

Abstract

In a study in western Kenya of malaria-infected adult women who had been treated with chloroquine, we compared the level of chloroquine and its principal metabolite, desethylchloroquine, in urine, measured using a newly developed modified Haskins test, with the level of chloroquine in whole blood, determined by high-performance liquid chromatography. Over a 28-day follow-up period, 277 matched urine and blood samples from 81 women were evaluated. A high correlation was observed between the level of chloroquine in whole blood (in μg/l) and that of chloroquine + desethylchloroquine in urine (in mg/l). The test was easily performed and may be useful for monitoring use of chloroquine in a community and determining pre-study or post-treatment ingestion or absorption of the drug in in vivo studies of parasite sensitivity.

Full text

PDF
485

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alván G., Ekman L., Lindström B. Determination of chloroquine and its desethyl metabolite in plasma, red blood cells and urine by liquid chromatography. J Chromatogr. 1982 Apr 16;229(1):241–247. doi: 10.1016/s0378-4347(00)86059-4. [DOI] [PubMed] [Google Scholar]
  2. Bergqvist Y., Domeij-Nyberg B. Distribution of chloroquine and its metabolite desethyl-chloroquine in human blood cells and its implication for the quantitative determination of these compounds in serum and plasma. J Chromatogr. 1983 Jan 14;272(1):137–148. doi: 10.1016/s0378-4347(00)86110-1. [DOI] [PubMed] [Google Scholar]
  3. Bergqvist Y., Eckerbom S. An improved gas chromatographic method for the simultaneous determination of chloroquine and two metabolites using capillary columns. J Chromatogr. 1984 Mar 9;306:147–153. doi: 10.1016/s0378-4347(00)80877-4. [DOI] [PubMed] [Google Scholar]
  4. Bergqvist Y., Frisk-Holmberg M. Sensitive method for the determination of chloroquine and its metabolite desethyl-chloroquine in human plasma and urine by high-performance liquid chromatography. J Chromatogr. 1980 Nov 14;221(1):119–127. doi: 10.1016/s0378-4347(00)81013-0. [DOI] [PubMed] [Google Scholar]
  5. Bergqvist Y., Hed C., Funding L., Suther A. Determination of chloroquine and its metabolites in urine: a field method based on ion-pair extraction. Bull World Health Organ. 1985;63(5):893–898. [PMC free article] [PubMed] [Google Scholar]
  6. Churchill F. C., 2nd, Mount D. L., Schwartz I. K. Determination of chloroquine and its major metabolite in blood using perfluoroacylation followed by fused-silica capillary gas chromatography with nitrogen-sensitive detection. J Chromatogr. 1983 May 13;274:111–120. doi: 10.1016/s0378-4347(00)84414-x. [DOI] [PubMed] [Google Scholar]
  7. Mount D. L., Patchen L. C., Williams S. B., Churchill F. C. Colorimetric and thin-layer chromatographic methods for field assay of chloroquine and its metabolites in urine. Bull World Health Organ. 1987;65(5):615–623. [PMC free article] [PubMed] [Google Scholar]
  8. Patchen L. C., Mount D. L., Schwartz I. K., Churchill F. C. Analysis of filter-paper-absorbed, finger-stick blood samples for chloroquine and its major metabolite using high-performance liquid chromatography with fluorescence detection. J Chromatogr. 1983 Nov 11;278(1):81–89. doi: 10.1016/s0378-4347(00)84758-1. [DOI] [PubMed] [Google Scholar]
  9. Rombo L., Björkman A., Sego E., Lindström B., Ericsson O., Gustafsson L. L. Evaluation of three qualitative tests for detection of chloroquine in urine--agreement with plasma concentrations determined with liquid chromatography. Ann Trop Med Parasitol. 1986 Jun;80(3):293–298. doi: 10.1080/00034983.1986.11812019. [DOI] [PubMed] [Google Scholar]
  10. Rombo L., Björkman A., Sego E., Lindström B., Ericsson O., Gustafsson L. L. Reliability of Dill-Glazko test. Lancet. 1985 Jun 29;1(8444):1509–1509. doi: 10.1016/s0140-6736(85)92284-6. [DOI] [PubMed] [Google Scholar]
  11. Steketee R. W., Brandling-Bennett A. D., Kaseje D. C., Schwartz I. K., Churchill F. C. In vivo response of Plasmodium falciparum to chloroquine in pregnant and non-pregnant women in Siaya District, Kenya. Bull World Health Organ. 1987;65(6):885–890. [PMC free article] [PubMed] [Google Scholar]
  12. Verdier F., Ramanamirija J. A., Pussard E., Clavier F., Biaud J. M., Coulanges P., Le Bras J. Unreliability of Dill Glazko test in detecting chloroquine in urine. Lancet. 1985 Jun 1;1(8440):1282–1283. doi: 10.1016/s0140-6736(85)92358-x. [DOI] [PubMed] [Google Scholar]
  13. WILSON T., EDESON J. F. Studies on the chemotherapy of malaria. III. The treatment of acute malaria with chloroquine. Med J Malaya. 1954 Dec;9(2):115–131. [PubMed] [Google Scholar]
  14. White N. J. Clinical pharmacokinetics of antimalarial drugs. Clin Pharmacokinet. 1985 May-Jun;10(3):187–215. doi: 10.2165/00003088-198510030-00001. [DOI] [PubMed] [Google Scholar]

Articles from Bulletin of the World Health Organization are provided here courtesy of World Health Organization

RESOURCES