Abstract
The lipids of Bacillus stearothermophilus strain 2184 were extracted with chloroform-methanol and separated into neutral lipid and three phospholipid fractions by chromatography on silicic acid columns. The phospholipids were identified by specific staining reactions on silicic acid-impregnated paper, by chromatography of alkaline and acid hydrolysis products, and by determination of acyl ester:glycerol:nitrogen:phosphorus molar ratios. The total extractable lipid was 8% of the dry weight of whole cells and consisted of 30 to 40% neutral lipid and 60 to 70% phospholipid. The phospholipid consisted of diphosphatidyl glycerol (23 to 42%), phosphatidyl glycerol (22 to 39%), and phosphatidyl ethanolamine (21 to 32%). The concentrations of diphosphatidyl glycerol and phosphatidyl glycerol were lower in 2-hr cells than in 4- and 8-hr cells. Whole cells were fractionated by sonic treatment and differential centrifugation. The total lipid content, expressed in per cent of dry weight of each fraction was: whole protoplasts, 10%; membrane fraction, 18%; 30,000 × g particulate fraction, 22%; and 105,000 × g particulate fraction, 26%. The relative phospholipid concentrations in each fraction were about the same. As had been previously reported, none of the phospholipid was stable to alkaline hydrolysis.
Full text
PDFImages in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ABRAM D. ELECTRON MICROSCOPE OBSERVATIONS ON INTACT CELLS, PROTOPLASTS, AND THE CYTOPLASMIC MEMBRANE OF BACILLUS STEAROTHERMOPHILUS. J Bacteriol. 1965 Mar;89:855–873. doi: 10.1128/jb.89.3.855-873.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Amelunxen R. E. Crystallization of thermostable glyceraldehyde-3-phosphate dehydrogenase from Bacillus stearothermophilus. Biochim Biophys Acta. 1966 Aug 10;122(2):175–181. doi: 10.1016/0926-6593(66)90059-2. [DOI] [PubMed] [Google Scholar]
- BARTLETT G. R. Phosphorus assay in column chromatography. J Biol Chem. 1959 Mar;234(3):466–468. [PubMed] [Google Scholar]
- BENSON A. A., STRICKLAND E. H. Plant phospholipids. 3. Identification of diphosphatidyl glycerol. Biochim Biophys Acta. 1960 Jul 1;41:328–333. doi: 10.1016/0006-3002(60)90016-0. [DOI] [PubMed] [Google Scholar]
- Bubela B., Holdsworth E. S. Protein synthesis in Bacillus stearothermophilus. Biochim Biophys Acta. 1966 Aug 17;123(2):376–389. doi: 10.1016/0005-2787(66)90290-5. [DOI] [PubMed] [Google Scholar]
- DAWSON R. M., HEMINGTON N., DAVENPORT J. B. Improvements in the method of determining individual phospholipids in a complex mixture by successive chemical hydrolyses. Biochem J. 1962 Sep;84:497–501. doi: 10.1042/bj0840497. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DOWNEY R. J., GEORGI C. E., MILITZER W. E. Electron transport particles from Bacillus stearothermophilus. J Bacteriol. 1962 May;83:1140–1146. doi: 10.1128/jb.83.5.1140-1146.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
- Friedman S. M. Protein-synthesizing machinery of thermophilic bacteria. Bacteriol Rev. 1968 Mar;32(1):27–38. doi: 10.1128/br.32.1.27-38.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GEORGI C. E., MILITZER W. E., DECKER T. S. The organelle nature of a particle isolated from Bacillus stearothermophilus. J Bacteriol. 1955 Dec;70(6):716–725. doi: 10.1128/jb.70.6.716-725.1955. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HANAHAN D. J., OLLEY J. N. Chemical nature of monophosphoinositides. J Biol Chem. 1958 Apr;231(2):813–828. [PubMed] [Google Scholar]
- HIRSCH J., AHRENS E. H., Jr The separation of complex lipide mixtures by the use of silicic acid chromatography. J Biol Chem. 1958 Aug;233(2):311–20. [PubMed] [Google Scholar]
- HOUTSMULLER U. M., VAN DEENENL ON THE ACCUMULATION OF AMINO ACID DERIVATIVES OF PHOSPHATIDYLGLYCEROL IN BACTERIA. Biochim Biophys Acta. 1964 Feb 24;84:96–98. doi: 10.1016/0926-6542(64)90106-4. [DOI] [PubMed] [Google Scholar]
- Ikawa M. Bacterial phosphatides and natural relationships. Bacteriol Rev. 1967 Mar;31(1):54–64. doi: 10.1128/br.31.1.54-64.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KOFFLER H. Protoplasmic differences between mesophiles and thermophiles. Bacteriol Rev. 1957 Dec;21(4):227–240. doi: 10.1128/br.21.4.227-240.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kates M. Bacterial lipids. Adv Lipid Res. 1964;2:17–90. [PubMed] [Google Scholar]
- LONG S. K., WILLIAMS O. B. Lipids of Bacillus stearothermophilus. J Bacteriol. 1960 May;79:629–637. doi: 10.1128/jb.79.5.629-637.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MANNING G. B., CAMPBELL L. L., FOSTER R. J. Thermostable alpha-amylase of Bacillus stearothermophilus. II. Physical properties and molecular weight. J Biol Chem. 1961 Nov;236:2958–2961. [PubMed] [Google Scholar]
- SNYDER F., STEPHENS N. A simplified spectrophotometric determination of ester groups in lipids. Biochim Biophys Acta. 1959 Jul;34:244–245. doi: 10.1016/0006-3002(59)90255-0. [DOI] [PubMed] [Google Scholar]
- WINTERMANS J. F. Concentrations of phosphatides and glycolipids in leaves and chloroplasts. Biochim Biophys Acta. 1960 Oct 21;44:49–54. doi: 10.1016/0006-3002(60)91521-3. [DOI] [PubMed] [Google Scholar]