Skip to main content
Postgraduate Medical Journal logoLink to Postgraduate Medical Journal
. 1974 Jul;50(585):441–446. doi: 10.1136/pgmj.50.585.441

Verapamil and the myocardium

Winifred G Nayler, Dennis Krikler
PMCID: PMC2495778  PMID: 4619835

Abstract

Although many of the drugs which recently have been developed for use in relieving angina pectoris display β-adrenoceptor blocking activity this property cannot be essential, because verapamil relieves angina pectoris without blocking the cardiac β-adrenoceptors. Like propranolol, verapamil slows the heart and reduces both the peak tension developed during systole and the rate at which that tension is developed. Verapamil further resembles propranolol in that it improves cardiac efficiency, reduces the oxygen requirement of the heart and abolishes certain arrhythmias. Verapamil differs from propranolol, however, in that it does not antagonize the cardiac β-adrenoceptors and it dilates the coronary vessels. Verapamil probably owes its activity to its ability to interfere with the inwards displacement of calcium ions across cardiac cell membranes.

Full text

PDF
441

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Braunwald E., Chidsey C. A. The adrenergic nervous system in the control of the normal and failing heart. Proc R Soc Med. 1965 Dec;58(12):1063–1066. doi: 10.1177/003591576505801221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Braunwald E. Control of myocardial oxygen consumption: physiologic and clinical considerations. Am J Cardiol. 1971 Apr;27(4):416–432. doi: 10.1016/0002-9149(71)90439-5. [DOI] [PubMed] [Google Scholar]
  3. Ebashi S., Endo M. Calcium ion and muscle contraction. Prog Biophys Mol Biol. 1968;18:123–183. doi: 10.1016/0079-6107(68)90023-0. [DOI] [PubMed] [Google Scholar]
  4. Hamer J. Cardiac work and contractility. Br Heart J. 1968 Jul;30(4):443–445. doi: 10.1136/hrt.30.4.443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Huxley H. E. The mechanism of muscular contraction. Science. 1969 Jun 20;164(3886):1356–1365. doi: 10.1126/science.164.3886.1356. [DOI] [PubMed] [Google Scholar]
  6. Katz A. M., Repke D. I. Calcium-membrane interactions in the myocardium: effects of ouabain, epinephrine and 3',5'-cyclic adenosine monophosphate. Am J Cardiol. 1973 Feb;31(2):193–201. doi: 10.1016/0002-9149(73)91032-1. [DOI] [PubMed] [Google Scholar]
  7. Kirchberger M. A., Tada M., Repke D. I., Katz A. M. Cyclic adenosine 3',5'-monophosphate-dependent protein kinase stimulation of calcium uptake by canine cardiac microsomes. J Mol Cell Cardiol. 1972 Dec;4(6):673–680. doi: 10.1016/0022-2828(72)90120-4. [DOI] [PubMed] [Google Scholar]
  8. Langer G. A. Ion fluxes in cardiac excitation and contraction and their relation to myocardial contractility. Physiol Rev. 1968 Oct;48(4):708–757. doi: 10.1152/physrev.1968.48.4.708. [DOI] [PubMed] [Google Scholar]
  9. Livesley B., Catley P. F., Campbell R. C., Oram S. Double-blind evaluation of verapamil, propranolol, and isosorbide dinitrate against a placebo in the treatment of angina pectoris. Br Med J. 1973 Feb 17;1(5850):375–378. doi: 10.1136/bmj.1.5850.375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Nayler W. G. An effect of ouabain on the superficially-located stores of calcium in cardiac muscle cells. J Mol Cell Cardiol. 1973 Feb;5(1):101–110. doi: 10.1016/0022-2828(73)90039-4. [DOI] [PubMed] [Google Scholar]
  11. Nayler W. G., Carson V. Effect of stellate ganglion stimulation on myocardial blood flow, oxygen consumption, and cardiac efficiency during beta-adrenoceptor blockade. Cardiovasc Res. 1973 Jan;7(1):22–29. doi: 10.1093/cvr/7.1.22. [DOI] [PubMed] [Google Scholar]
  12. Nayler W. G., McInnes I., Swann J. B., Carson V., Lowe T. E. Effect of propranolol, a beta-adrenergic antagonist, on blood flow in the coronary and other vascular fields. Am Heart J. 1967 Feb;73(2):207–216. doi: 10.1016/0002-8703(67)90150-0. [DOI] [PubMed] [Google Scholar]
  13. Nayler W. G., McInnes I., Swann J. B., Price J. M., Carson V., Race D., Lowe T. E. Some effects of iproveratril (Isoptin) on the cardiovascular system. J Pharmacol Exp Ther. 1968 Jun;161(2):247–261. [PubMed] [Google Scholar]
  14. Nayler W. G., McInnes I., Swann J. B., Race D., Carson V., Lowe T. E. Some effects of diphenylhydantoin and propranolol on the cardiovascular system. Am Heart J. 1968 Jan;75(1):83–96. doi: 10.1016/0002-8703(68)90119-1. [DOI] [PubMed] [Google Scholar]
  15. Nayler W. G., Stone J., Carson V., McInnes I., Mack V., Lowe T. E. The effect of beta adrenergic antagonists on cardiac contractions, myofibrillar ATPase activity, high-energy phosphate stores and lipid-facilitated transfort of calciumiones. J Pharmacol Exp Ther. 1969 Feb;165(2):225–233. [PubMed] [Google Scholar]
  16. Nayler W. G., Szeto J. Effect of verapamil on contractility, oxygen utilization, and calcium exchangeability in mammalian heart muscle. Cardiovasc Res. 1972 Mar;6(2):120–128. doi: 10.1093/cvr/6.2.120. [DOI] [PubMed] [Google Scholar]
  17. Nyberg G. Drugs for angina pectoris. Br Med J. 1973 Jul 7;3(5870):47–48. doi: 10.1136/bmj.3.5870.47-b. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. PORTER K. R. The sarcoplasmic reticulum. Its recent history and present status. J Biophys Biochem Cytol. 1961 Aug;10(4):219–226. doi: 10.1083/jcb.10.4.219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Rubio R., Berne R. M., Dobson J. G., Jr Sites of adenosine production in cardiac and skeletal muscle. Am J Physiol. 1973 Oct;225(4):938–953. doi: 10.1152/ajplegacy.1973.225.4.938. [DOI] [PubMed] [Google Scholar]
  20. SARNOFF S. J., BRAUNWALD E., WELCH G. H., Jr, CASE R. B., STAINSBY W. N., MACRUZ R. Hemodynamic determinants of oxygen consumption of the heart with special reference to the tension-time index. Am J Physiol. 1958 Jan;192(1):148–156. doi: 10.1152/ajplegacy.1957.192.1.148. [DOI] [PubMed] [Google Scholar]
  21. Sandler G., Clayton G. A., Thornicroft S. G. Clinical evaluation of verapamil in angina pectoris. Br Med J. 1968 Jul 27;3(5612):224–227. doi: 10.1136/bmj.3.5612.224. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Schamroth L. Immediate effects of intravenous verapamil on atrial fibrillation. Cardiovasc Res. 1971 Oct;5(4):419–424. doi: 10.1093/cvr/5.4.419. [DOI] [PubMed] [Google Scholar]
  23. Schamroth L., Krikler D. M., Garrett C. Immediate effects of intravenous verapamil in cardiac arrhythmias. Br Med J. 1972 Mar 11;1(5801):660–662. doi: 10.1136/bmj.1.5801.660. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Shigenobu K., Sperelakis N. Calcium current channels induced by catecholamines in chick embryonic hearts whose fast sodium channels are blocked by tetrodotoxin or elevated potassium. Circ Res. 1972 Dec;31(6):932–952. doi: 10.1161/01.res.31.6.932. [DOI] [PubMed] [Google Scholar]
  25. Singh B. N. A fourth class of anti-dysrhythmic action? Effect of verapamil on ouabain toxicity, on atrial and ventricular intracellular potentials, and on other features of cardiac function. Cardiovasc Res. 1972 Mar;6(2):109–119. doi: 10.1093/cvr/6.2.109. [DOI] [PubMed] [Google Scholar]
  26. WEBER A., HERZ R. The binding of calcium to actomyosin systems in relation to their biological activity. J Biol Chem. 1963 Feb;238:599–605. [PubMed] [Google Scholar]

Articles from Postgraduate Medical Journal are provided here courtesy of BMJ Publishing Group

RESOURCES