Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1969 Feb;97(2):603–611. doi: 10.1128/jb.97.2.603-611.1969

Characterization and Biological Activity of the Monocytosis-producing Agent of Listeria monocytogenes

Ian A Holder a,1, C P Sword a
PMCID: PMC249734  PMID: 4975149

Abstract

Experiments directed toward determining the lipids in extracts of Listeria monocytogenes containing monocytosis-producing agent (MPA) and the effect of these extracts on several biochemical parameters previously shown to change during experimental Listeria infection were conducted. MPA-containing extracts were found to be a complex of lipids with glycerides, glycolipids, and phospholipid being present. No common cell wall carbohydrates were found. A glyceride, designated glyceride A, was determined to cause the characteristic mononuclear response observed in mice injected with MPA-containing extracts. Fasted MPA-treated animals showed less gluconeogenesis than did controls. Blood glucose levels declined in MPA-treated animals. Increases observed in both blood urea nitrogen and plasma glutamic-pyruvic transaminase were greater in the control groups. Incorporation of 14C-alanine into liver glycogen was depressed in MPA-treated animals. Liver steroid levels in the control groups increased during fasting and remained elevated for the duration of the experiments, while levels in the MPA-treated groups declined initially and showed no increase until 72 hr after injection. MPA appears to affect steroid metabolism and consequently the animals' homeostatic mechanisms seem to be impaired. Possibly as a consequence, carbohydrate metabolism is altered. The apparent effect of MPA on steroid metabolism and on the gluconeogenic process may indicate participation in the carbohydrate derangement observed in experimental Listeria infection.

Full text

PDF
603

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BERRY L. J., SMYTHE D. S., YOUNG L. G. Effects of bacterial endotoxin on metabolism. I. Carbohydrate depletion and the protective role of cortisone. J Exp Med. 1959 Sep 1;110:389–405. doi: 10.1084/jem.110.3.389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BRIN M., MCKEE R. W. Effects of x-irradiation, nitrogen mustard, fasting, cortisone and adrenalectomy on transaminase activity in the rat. Arch Biochem Biophys. 1956 Apr;61(2):384–389. doi: 10.1016/0003-9861(56)90361-7. [DOI] [PubMed] [Google Scholar]
  3. CLARK I. A colorimetric reaction for the estimation of cortisone, hydrocortisone, aldosterone and related steroids. Nature. 1955 Jan 15;175(4446):123–124. doi: 10.1038/175123a0. [DOI] [PubMed] [Google Scholar]
  4. DITTMER J. C., LESTER R. L. A SIMPLE, SPECIFIC SPRAY FOR THE DETECTION OF PHOSPHOLIPIDS ON THIN-LAYER CHROMATOGRAMS. J Lipid Res. 1964 Jan;5:126–127. [PubMed] [Google Scholar]
  5. GAVOSTO F., PILERI A., BRUSCA A. Increased transaminase activity in the liver after administration of cortisone. Biochim Biophys Acta. 1957 May;24(2):250–254. doi: 10.1016/0006-3002(57)90190-7. [DOI] [PubMed] [Google Scholar]
  6. Ghosh B. K., Carroll K. K. Isolation, composition, and structure of membrane of Listeria monocytogenes. J Bacteriol. 1968 Feb;95(2):688–699. doi: 10.1128/jb.95.2.688-699.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. JAEGER R. F., MYERS D. M. Listeria monocytogenes: a study of two strains isolated from human listeriosis. Can J Microbiol. 1954 Aug;1(1):12–21. doi: 10.1139/m55-003. [DOI] [PubMed] [Google Scholar]
  8. KAHAN J. A rapid photometric method for the determination of glycogen. Arch Biochem Biophys. 1953 Dec;47(2):408–418. doi: 10.1016/0003-9861(53)90477-9. [DOI] [PubMed] [Google Scholar]
  9. KEELER R. F., GRAY M. L. Antigenic and related biochemical properties of Listeria monocytogenes. I. Preparation and composition of cell wall material. J Bacteriol. 1960 Nov;80:683–692. doi: 10.1128/jb.80.5.683-692.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. LANNI F., DILLON M. L., BEARD J. W. Determination of small quantities of nitrogen in serological precipitates and other biological materials. Proc Soc Exp Biol Med. 1950 May;74(1):4–7. doi: 10.3181/00379727-74-17791. [DOI] [PubMed] [Google Scholar]
  11. LINDELL S. S., SMITH I. M., NELSON J. W., DELLE M., ROUTH J. I. LOCUS OF BIOCHEMICAL CHANGE IN MICE DYING FROM STAPHYLOCOCCAL INFECTION. Nature. 1964 Jan 11;201:185–187. doi: 10.1038/201185b0. [DOI] [PubMed] [Google Scholar]
  12. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  13. MURRAY E. G. The story of Listeria. Trans R Soc Can. 1953 Jun;47(5):15–21. [PubMed] [Google Scholar]
  14. PARETSKY D., DOWNS C. M., SALMON C. W. SOME BIOCHEMICAL CHANGES IN THE GUINEA PIG DURING INFECTION WITH COXIELLA BURNETII. J Bacteriol. 1964 Jul;88:137–142. doi: 10.1128/jb.88.1.137-142.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. PATOCKA F., MARA M., SCHINDLER J. Studies on the pathogenicity of Listeria monocytogenes. II. Influence of substances isolated from cells of Listeria monocytogenes on experimental listeriosis in white mice. Zentralbl Bakteriol Orig. 1959 Apr;174(7-8):586–593. [PubMed] [Google Scholar]
  16. RADIN N. S., BROWN J. R., LAVIN F. B. The preparative isolation of cerebrosides. J Biol Chem. 1956 Apr;219(2):977–983. [PubMed] [Google Scholar]
  17. ROBERTS N. R., ROSEN F., BUDNICK L. E., NICHOL C. A. An enzymatic basis for the gluconeogenic action of hydrocortisone. Science. 1958 Feb 7;127(3293):287–288. doi: 10.1126/science.127.3293.287-b. [DOI] [PubMed] [Google Scholar]
  18. ROSEN F., ROBERTS N. R., NICHOL C. A. Glucocorticosteroids and transaminase activity. I. Increased activity of glutamicpyruvic transaminase in four conditions associated with gluconeogenesis. J Biol Chem. 1959 Mar;234(3):476–480. [PubMed] [Google Scholar]
  19. SCHIMKE R. T. Differential effects of fasting and protein-free diets on levels of urea cycle enzymes in rat liver. J Biol Chem. 1962 Jun;237:1921–1924. [PubMed] [Google Scholar]
  20. SCHIMKE R. T. Studies on factors affecting the levels of urea cycle enzymes in rat liver. J Biol Chem. 1963 Mar;238:1012–1018. [PubMed] [Google Scholar]
  21. SINGH V. N., BHARGAVA U., VENKITASUBRAMANIAN T. A., VISWANATHAN R. Study of glycogen synthesizing and degrading enzymes of guinea pig liver in experimental tuberculosis. Arch Biochem Biophys. 1963 May;101:234–238. doi: 10.1016/s0003-9861(63)80008-9. [DOI] [PubMed] [Google Scholar]
  22. WILSON H., BORRIS J. J., BAHN R. C. Steroids in the blood and urine of female mice bearing an ACTH-producing pituitary tumor. Endocrinology. 1958 Feb;62(2):135–149. doi: 10.1210/endo-62-2-135. [DOI] [PubMed] [Google Scholar]
  23. Wilder M. S., Sword C. P. Mechanisms of pathogenesis in Listeria monocytogenes infection. 3. Carbohydrate metabolism. J Bacteriol. 1967 Feb;93(2):538–543. doi: 10.1128/jb.93.2.538-543.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Wilder M. S., Sword C. P. Mechanisms of pathogenesis in Listeria monocytogenes infection. II. Characterization of listeriosis in the CD-1 mouse and survey of biochemical lesions. J Bacteriol. 1967 Feb;93(2):531–537. doi: 10.1128/jb.93.2.531-537.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES