Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1969 Feb;97(2):684–690. doi: 10.1128/jb.97.2.684-690.1969

Initiation of Germination and Inactivation of Bacillus pumilus Spores by Hydrostatic Pressure

J G Clouston 1, Pamela A Wills 1
PMCID: PMC249746  PMID: 5773022

Abstract

The effect of hydrostatic pressures as high as 1,700 atm at 25 C on the heat and radiation resistance of Bacillus pumilus spores was studied. Phosphate-buffered spores were more sensitive to compression than spores suspended in distilled water. Measurements of the turbidity of suspensions, the viability, refractility, stainability, dry weight, and respiratory activity of spores, and calcium and dipicolinic acid release were made for different pressures and times. Initiation of germination occurred at pressures exceeding 500 atm and was the prerequisite for inactivation by compression. The rate of initiation increased with increasing pressure at constant temperature. This result is interpreted as a net decrease in the volume of the system during initiation as a result of increased solvation of the spore components.

Full text

PDF
684

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Flenley D. C., Millar J. S., Rees H. A. Accuracy of oxygen and carbon dioxide electrodes. Br Med J. 1967 May 6;2(5548):349–352. doi: 10.1136/bmj.2.5548.349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Foerster H. F., Foster J. W. Response of Bacillus spores to combinations of germinative compounds. J Bacteriol. 1966 Mar;91(3):1168–1177. doi: 10.1128/jb.91.3.1168-1177.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. HILLS G. M. Chemical factors in the germination of spore-bearing aerobes; the effect of yeast extract on the germination of Bacillus anthracis and its replacement by adenosine. Biochem J. 1949;45(3):353–362. doi: 10.1042/bj0450353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Lee W. H., Ordal Z. J. REVERSIBLE ACTIVATION FOR GERMINATION AND SUBSEQUENT CHANGES IN BACTERIAL SPORES. J Bacteriol. 1963 Jan;85(1):207–217. doi: 10.1128/jb.85.1.207-217.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Lewis J. C. Determination of dipicolinic acid in bacterial spores by ultraviolet spectrometry of the calcium chelate. Anal Biochem. 1967 May;19(2):327–337. doi: 10.1016/0003-2697(67)90168-6. [DOI] [PubMed] [Google Scholar]
  6. MCCORMICK N. G. KINETICS OF SPORE GERMINATION. J Bacteriol. 1965 May;89:1180–1185. doi: 10.1128/jb.89.5.1180-1185.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. POWELL J. F., STRANGE R. E. Biochemical changes occurring during the germination of bacterial spores. Biochem J. 1953 May;54(2):205–209. doi: 10.1042/bj0540205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. RODE L. J., FOSTER J. W. Ionic germination of spores of Bacillus megaterium QM B 1551. Arch Mikrobiol. 1962;43:183–200. doi: 10.1007/BF00406435. [DOI] [PubMed] [Google Scholar]
  9. Rode L. J., Foster J. W. MECHANICAL GERMINATION OF BACTERIAL SPORES. Proc Natl Acad Sci U S A. 1960 Jan;46(1):118–128. doi: 10.1073/pnas.46.1.118. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. WOESE C., MOROWITZ H. J. Kinetics of the release of dipicolinic acid from spores of Bacillus subtilis. J Bacteriol. 1958 Jul;76(1):81–83. doi: 10.1128/jb.76.1.81-83.1958. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. YOUNG I. E. A relationship between the free amino acid pool, dipicolinic acid, calcium from resting spores of Bacillus megaterium. Can J Microbiol. 1959 Apr;5(2):197–202. doi: 10.1139/m59-024. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES