Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1969 Feb;97(2):691–696. doi: 10.1128/jb.97.2.691-696.1969

Phosphoenolpyruvate Carboxylation and Aspartate Synthesis in Acetobacter suboxydans1

G W Claus a, M L Orcutt a, R T Belly a
PMCID: PMC249747  PMID: 5773023

Abstract

Dialyzed extracts of Acetobacter suboxydans ATCC 621 catalyze 14CO2 assimilation in the presence of phosphoenolpyruvate and a divalent cation. The formation of 14C-oxalacetate was demonstrated and found not to be dependent upon the presence of orthophosphate or diphosphonucleotides. Oxalacetate synthesis was stimulated by orthophosphate and inhibited by aspartate. All attempts to demonstrate a reversible carboxylation mechanism have failed. 14C-aspartate was synthesized when phosphoenolpyruvate, H14Co3, pyridoxal phosphate, and glutamate were added to dialyzed extracts. Chromatographic and spectrophotometric analyses and chemical degradation further demonstrate the presence of a reversible aspartate aminotransferase. The function of oxalacetate synthesis in a bacterium that reportedly lacks an operative tricarboxylic acid cycle is discussed.

Full text

PDF
691

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexander M., Wilson P. W. ENZYME LOCALIZATION IN Azotobacter Vinelandii. Proc Natl Acad Sci U S A. 1955 Nov 15;41(11):843–848. doi: 10.1073/pnas.41.11.843. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BANDURSKI R. S. Further studies on the enzymatic synthesis of oxalacetate from phosphorylenolpyruvate and carbon dioxide. J Biol Chem. 1955 Nov;217(1):137–150. [PubMed] [Google Scholar]
  3. BAUGH C. L., CLAUS G. W., WERKMAN C. H. Heterotrophic fixation of carbon dioxide by extracts of Nocardia corallina. Arch Biochem Biophys. 1960 Feb;86:255–259. doi: 10.1016/0003-9861(60)90414-8. [DOI] [PubMed] [Google Scholar]
  4. BAUGH C. L., LANHAM J. W., SURGALLA M. J. EFFECTS OF BICARBONATE ON GROWTH OF PASTEURELLA PESTIS. II. CARBON DIOXIDE FIXATION INTO OXALACETATE BY CELL-FREE EXTRACTS. J Bacteriol. 1964 Sep;88:553–558. doi: 10.1128/jb.88.3.553-558.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. COOKSEY K. E., RAINBOW C. Metabolic patterns in acetic acid bacteria. J Gen Microbiol. 1962 Jan;27:135–142. doi: 10.1099/00221287-27-1-135. [DOI] [PubMed] [Google Scholar]
  6. COOPER J., SRERE P. A., TABACHNICK M., RACKER E. The oxidative pentose phosphate cycle. II. Quantitative determination of intermediates and enzymes. Arch Biochem Biophys. 1958 Apr;74(2):306–314. doi: 10.1016/0003-9861(58)90002-x. [DOI] [PubMed] [Google Scholar]
  7. Cánovas J. L., Kornberg H. L. Properties and regulation of phosphopyruvate carboxylase activity in Escherichia coli. Proc R Soc Lond B Biol Sci. 1966 Aug 16;165(999):189–205. doi: 10.1098/rspb.1966.0064. [DOI] [PubMed] [Google Scholar]
  8. DAVIS B. D. The teleonomic significance of biosynthetic control mechanisms. Cold Spring Harb Symp Quant Biol. 1961;26:1–10. doi: 10.1101/sqb.1961.026.01.005. [DOI] [PubMed] [Google Scholar]
  9. Din G. A., Suzuki I., Lees H. Carbon dioxide fixation and phosphoenolpyruvate carboxylase in Ferrobacillus ferrooxidans. Can J Microbiol. 1967 Nov;13(11):1413–1419. doi: 10.1139/m67-188. [DOI] [PubMed] [Google Scholar]
  10. FEWSTER J. A. Growth of acetobacter suboxydans and the oxidation of aldoses, related carboxylic acids, and aldehydes. Biochem J. 1958 Aug;69(4):582–595. doi: 10.1042/bj0690582. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. KING T. E., CHELDELIN V. H. Oxidations in Acetobacter suboxydans. Biochim Biophys Acta. 1954 May;14(1):108–116. doi: 10.1016/0006-3002(54)90137-7. [DOI] [PubMed] [Google Scholar]
  12. KING T. E., CHELDELIN V. H. Oxidative dissimilation in Acetobacter suboxydans. J Biol Chem. 1952 Sep;198(1):127–133. [PubMed] [Google Scholar]
  13. KING T. E., CHELDELIN V. H. Sources of energy and the dinitrophenol effect in the growth of Acetobacter suboxydans. J Bacteriol. 1953 Nov;66(5):581–584. doi: 10.1128/jb.66.5.581-584.1953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. KITOS P. A., KING T. E., CHELDELIN V. H. Metabolism of fructose-1,6-diphosphate and acetate in Acetobacter suboxydans. J Bacteriol. 1957 Nov;74(5):565–571. doi: 10.1128/jb.74.5.565-571.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. KITOS P. A., WANG C. H., MOHLER B. A., KING T. E., CHELDELIN V. H. Glucose and gluconate dissimilation in Acetobacter suboxydans. J Biol Chem. 1958 Dec;233(6):1295–1298. [PubMed] [Google Scholar]
  16. MARUYAMA H., LANE M. D. Purification and properties of phosphoenolpyruvate carboxylase from the germinating peanut cotyledon. Biochim Biophys Acta. 1962 Dec 4;65:207–218. doi: 10.1016/0006-3002(62)91040-5. [DOI] [PubMed] [Google Scholar]
  17. Maeba P., Sanwal B. D. Feedback inhibition of phosphoenolpyruvate carboxylase of Salmonella. Biochem Biophys Res Commun. 1965 Dec 9;21(5):503–508. doi: 10.1016/0006-291x(65)90412-2. [DOI] [PubMed] [Google Scholar]
  18. Maragoudakis M. E., Strassman M. Biosynthesis of alpha-isopropylmalic and citric acids in Acetobacter suboxydans. J Bacteriol. 1967 Sep;94(3):512–516. doi: 10.1128/jb.94.3.512-516.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. RAO MRR Acetic acid bacteria. Annu Rev Microbiol. 1957;11:317–338. doi: 10.1146/annurev.mi.11.100157.001533. [DOI] [PubMed] [Google Scholar]
  20. SEKIZAWA Y., MARAGOUDAKIS M. E., KERWAR S. S., FLIKKE M., BAICH A., KING T. E., CHELDELIN V. H. Glutamic acid biosynthesis in an organism lacking a Krebs tricarboxylic acid cycle. Biochem Biophys Res Commun. 1962 Oct 31;9:361–366. doi: 10.1016/0006-291x(62)90055-4. [DOI] [PubMed] [Google Scholar]
  21. SIU P. M. Carbon dioxide fixation by phosphopyruvate carboxylase from spinach. Biochim Biophys Acta. 1962 Oct 8;63:520–522. doi: 10.1016/0006-3002(62)90120-8. [DOI] [PubMed] [Google Scholar]
  22. SIU P. M., WOOD H. G. Phosphoenolpyruvic carboxytransphosphorylase, a CO2 fixation enzyme from propionic acid bacteria. J Biol Chem. 1962 Oct;237:3044–3051. [PubMed] [Google Scholar]
  23. STADTMAN E. R., NOVELLI G. D., LIPMANN F. Coenzyme A function in and acetyl transfer by the phosphotransacetylase system. J Biol Chem. 1951 Jul;191(1):365–376. [PubMed] [Google Scholar]
  24. STOUTHAMER A. H. Oxidative possibilities in the catalase-positive Acetobacter species. Antonie Van Leeuwenhoek. 1959;25:241–264. doi: 10.1007/BF02542850. [DOI] [PubMed] [Google Scholar]
  25. SUZUKI I., WERKMAN C. H. Chemoautotrophic carbon dioxide fixation by extracts of Thiobacillus thiooxidans. I. Formation of oxalacetic acid. Arch Biochem Biophys. 1958 Jul;76(1):103–111. doi: 10.1016/0003-9861(58)90124-3. [DOI] [PubMed] [Google Scholar]
  26. TCHEN T. T., VENNESLAND B. Enzymatic carbon dioxide fixation into oxal-acetate in wheat germ. J Biol Chem. 1955 Apr;213(2):533–546. [PubMed] [Google Scholar]
  27. WILLIAMS P. J., RAINBOW C. ENZYMES OF THE TRICARBOXYLIC ACID CYCLE IN ACETIC ACID BACTERIA. J Gen Microbiol. 1964 May;35:237–247. doi: 10.1099/00221287-35-2-237. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES