Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1969 Feb;97(2):734–742. doi: 10.1128/jb.97.2.734-742.1969

Anthranilate Synthetase, an Enzyme Specified by the Tryptophan Operon of Escherichia coli: Comparative Studies on the Complex and the Subunits

Junetsu Ito a,1, Charles Yanofsky b
PMCID: PMC249753  PMID: 4886290

Abstract

The properties of the anthranilate synthetase complex and its separated subunits were compared in catalyzing the anthranilate synthetase reaction, chorismate + l-glutamine or NH4+ → anthranilate, and the transferase reaction, anthranilate + 5′-phosphorylribosyl-1-pyrophosphate → phosphoribosyl anthranilate. It is shown that anthranilate synthetase component I is activated by normal anthranilate synthetase component II, a component IICRM (CRM = immunologically cross-reacting material), and by a presumed fragment of component II produced by a deletion mutant. Significant differences between the complex and its subunits are demonstrated with respect to substrate affinity, thermostability, feedback inhibitor sensitivity, and activity in the presence of various divalent cations. Of particular interest are the findings that the transferase activity of component II is only inhibitable by l-tryptophan when the component is in the complex and that this inhibition does not appear to depend upon the feedback-sensitive site of component I.

Full text

PDF
734

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baker T. I., Crawford I. P. Anthranilate synthetase. Partial purification and some kinetic studies on the enzyme from Escherichia coli. J Biol Chem. 1966 Dec 10;241(23):5577–5584. [PubMed] [Google Scholar]
  2. Bauerle R. H., Margolin P. A multifunctional enzyme complex in the tryptophan pathway of Salmonella typhimurium: comparison of polarity and pseudopolarity mutations. Cold Spring Harb Symp Quant Biol. 1966;31:203–214. doi: 10.1101/sqb.1966.031.01.028. [DOI] [PubMed] [Google Scholar]
  3. CHANGEUX J. P. ALLOSTERIC INTERACTIONS INTERPRETED IN TERMS OF QUATERNARY STRUCTURE. Brookhaven Symp Biol. 1964 Dec;17:232–249. [PubMed] [Google Scholar]
  4. Changeux J. P., Gerhart J. C., Schachman H. K. Allosteric interactions in aspartate transcarbamylase. I. Binding of specific ligands to the native enzyme and its isolated subunits. Biochemistry. 1968 Feb;7(2):531–538. doi: 10.1021/bi00842a007. [DOI] [PubMed] [Google Scholar]
  5. Gerhart J. C., Schachman H. K. Allosteric interactions in aspartate transcarbamylase. II. Evidence for different conformational states of the protein in the presence and absence of specific ligands. Biochemistry. 1968 Feb;7(2):538–552. doi: 10.1021/bi00842a600. [DOI] [PubMed] [Google Scholar]
  6. Gerhart J. C., Schachman H. K. Distinct subunits for the regulation and catalytic activity of aspartate transcarbamylase. Biochemistry. 1965 Jun;4(6):1054–1062. doi: 10.1021/bi00882a012. [DOI] [PubMed] [Google Scholar]
  7. Gibson F., Pittard J., Reich E. Ammonium ions as the source of nitrogen for tryptophan biosynthesis in whole cells of Escherichia coli. Biochim Biophys Acta. 1967 Apr 25;136(3):573–576. doi: 10.1016/0304-4165(67)90020-7. [DOI] [PubMed] [Google Scholar]
  8. Gibson M. I., Gibson F. Preliminary studies on the isolation and metabolism of an intermediate in aromatic biosynthesis: chorismic acid. Biochem J. 1964 Feb;90(2):248–256. doi: 10.1042/bj0900248. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ito J., Cox E. C., Yanofsky C. Anthranilate synthetase, an enzyme specified by the tryptophan operon of Escherichia coli: purification and characterization of component I. J Bacteriol. 1969 Feb;97(2):725–733. doi: 10.1128/jb.97.2.725-733.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ito J., Yanofsky C. The nature of the anthranilic acid synthetase complex of Escherichia coli. J Biol Chem. 1966 Sep 10;241(17):4112–4114. [PubMed] [Google Scholar]
  11. Kingdon H. S., Stadtman E. R. Regulation of glutamine synthetase. X. Effect of growth conditions on the susceptibility of Escherichia coli glutamine synthetase to feedback inhibition. J Bacteriol. 1967 Oct;94(4):949–957. doi: 10.1128/jb.94.4.949-957.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  13. MARTIN R. G., AMES B. N. A method for determining the sedimentation behavior of enzymes: application to protein mixtures. J Biol Chem. 1961 May;236:1372–1379. [PubMed] [Google Scholar]
  14. MONOD J., WYMAN J., CHANGEUX J. P. ON THE NATURE OF ALLOSTERIC TRANSITIONS: A PLAUSIBLE MODEL. J Mol Biol. 1965 May;12:88–118. doi: 10.1016/s0022-2836(65)80285-6. [DOI] [PubMed] [Google Scholar]
  15. Schlesinger M. J., Barrett K. The reversible dissociation of the alkaline phosphatase of Escherichia coli. I. Formation and reactivation of subunits. J Biol Chem. 1965 Nov;240(11):4284–4292. [PubMed] [Google Scholar]
  16. Shapiro B. M., Kingdon H. S., Stadtman E. R. Regulation of glutamine synthetase. VII. Adenylyl glutamine synthetase: a new form of the enzyme with altered regulatory and kinetic properties. Proc Natl Acad Sci U S A. 1967 Aug;58(2):642–649. doi: 10.1073/pnas.58.2.642. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. YANOFSKY C. Enzymatic studies with a series of tryptophan auxotrophs of Escherichia coli. J Biol Chem. 1957 Feb;224(2):783–792. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES