Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1969 Mar;97(3):1169–1175. doi: 10.1128/jb.97.3.1169-1175.1969

Replication of the Bacterial Chromosome: Location of New Initiation Sites After Irradiation

Daniel Billen 1
PMCID: PMC249831  PMID: 4887502

Abstract

New loci of replication along the bacterial chromosome are observed after irradiation of Escherichia coli. It was conjectured that, after X-irradiation, the new initiation site was random with respect to the fixed-origin, whereas, after ultraviolet light exposure, it was selective and appeared to be from the fixed-origin. Evidence presented here shows that, after X-irradiation of E. coli, the new initiation site(s) for the onset of deoxyribonucleic acid replication is induced at chromosomal regions not restricted to the fixed-origin. After ultraviolet light exposure, the new initiation site is preferentially from the fixed-origin. In these studies amino acid starvation was used to synchronize chromosome replication and to allow for differential radioisotopic labeling of the chromosomal origin and terminus. To facilitate interpretation, growing cells actively replicating their chromosome were compared with cells lacking growth points at the time of irradiation. The role of these new replication sites in the observed kinetics of deoxyribonucleic acid replication following X-ray or ultraviolet light exposure is discussed.

Full text

PDF
1169

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abe M., Tomizawa J. Replication of the escherichia coli K12 chromosome. Proc Natl Acad Sci U S A. 1967 Nov;58(5):1911–1918. doi: 10.1073/pnas.58.5.1911. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Achey P. M., Billen D. Correlation of alteration in chromosome replication sequence with cell lethality. Radiat Res. 1968 Mar;33(3):533–539. [PubMed] [Google Scholar]
  3. BILLEN D. Alterations in the radiosensitivity of Escherichia coli through modification of cellular macromolecular components. Biochim Biophys Acta. 1959 Jul;34:110–116. doi: 10.1016/0006-3002(59)90238-0. [DOI] [PubMed] [Google Scholar]
  4. BILLEN D. UNBALANCED DEOXYRIBONUCLEIC ACID SYNTHESIS: ITS ROLE IN X-RAY-INDUCED BACTERIAL DEATH. Biochim Biophys Acta. 1963 Aug 20;72:608–618. [PubMed] [Google Scholar]
  5. Billen D., Hewitt R. R., Lapthisophon T., Achey P. M. Deoxyribonucleic acid repair replication after ultraviolet light or x-ray exposure of bacteria. J Bacteriol. 1967 Nov;94(5):1538–1545. doi: 10.1128/jb.94.5.1538-1545.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Billen D., Hewitt R. Concerning the dynamics of chromosome replication and degradation in a bacterial population exposed to X-rays. Biochim Biophys Acta. 1967 May 30;138(3):587–595. doi: 10.1016/0005-2787(67)90554-0. [DOI] [PubMed] [Google Scholar]
  7. Billen D., Hewitt R., Jorgensen G. X-ray-induced perturbations in the replication of the bacterial chromosome. Biochim Biophys Acta. 1965 Jul 15;103(3):440–454. doi: 10.1016/0005-2787(65)90137-1. [DOI] [PubMed] [Google Scholar]
  8. Billen D. Methylation of the bacterial chromosome: an event at the "replication point"? J Mol Biol. 1968 Feb 14;31(3):477–486. doi: 10.1016/0022-2836(68)90422-1. [DOI] [PubMed] [Google Scholar]
  9. Cerdá-Olmedo E., Hanawalt P. C., Guerola N. Mutagenesis of the replication point by nitrosoguanidine: map and pattern of replication of the Escherichia coli chromosome. J Mol Biol. 1968 May 14;33(3):705–719. doi: 10.1016/0022-2836(68)90315-x. [DOI] [PubMed] [Google Scholar]
  10. HAROLD F. M., ZIPORIN Z. Z. Synthesis of protein and of DNA in Escherichia coli irradiated with ultraviolet light. Biochim Biophys Acta. 1958 Aug;29(2):439–440. doi: 10.1016/0006-3002(58)90211-7. [DOI] [PubMed] [Google Scholar]
  11. Helmstetter C. E. DNA synthesis during the division cycle of rapidly growing Escherichia coli B/r. J Mol Biol. 1968 Feb 14;31(3):507–518. doi: 10.1016/0022-2836(68)90424-5. [DOI] [PubMed] [Google Scholar]
  12. Hewitt R., Billen D., Jorgensen G. Radiation-induced reorientation of chromosome replication sequence: generality in Escherichia coli; independence of prophage or 5-bromouracil toxicity. Radiat Res. 1967 Oct;32(2):214–226. [PubMed] [Google Scholar]
  13. Hewitt R., Billen D. Reorientation of chromosome replication after exposure to ultraviolet light of Escherichia coli. J Mol Biol. 1965 Aug;13(1):40–53. doi: 10.1016/s0022-2836(65)80078-x. [DOI] [PubMed] [Google Scholar]
  14. Huberman J. A., Riggs A. D. On the mechanism of DNA replication in mammalian chromosomes. J Mol Biol. 1968 Mar 14;32(2):327–341. doi: 10.1016/0022-2836(68)90013-2. [DOI] [PubMed] [Google Scholar]
  15. KELNER A. Growth, respiration, and nucleic acid synthesis in ultraviolet-irradiated and in photoreactivated Escherichia coli. J Bacteriol. 1953 Mar;65(3):252–262. doi: 10.1128/jb.65.3.252-262.1953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Knippers R., Sinsheimer R. L. Process of infection with bacteriophage phiX174. XX. Attachment of the parental DNA of bacteriophage phiX174 to a fast-sedimenting cell component. J Mol Biol. 1968 May 28;34(1):17–29. doi: 10.1016/0022-2836(68)90231-3. [DOI] [PubMed] [Google Scholar]
  17. LARK C., LARK K. G. EVIDENCE FOR TWO DISTINCT ASPECTS OF THE MECHANISM REGULATING CHROMOSOME REPLICATION IN ESCHERICHIA COLI. J Mol Biol. 1964 Oct;10:120–136. doi: 10.1016/s0022-2836(64)80032-2. [DOI] [PubMed] [Google Scholar]
  18. LARK K. G., REPKO T., HOFFMAN E. J. THE EFFECT OF AMINO ACID DEPRIVATION ON SUBSEQUENT DEOXYRIBONUCLEIC ACID REPLICATION. Biochim Biophys Acta. 1963 Sep 17;76:9–24. [PubMed] [Google Scholar]
  19. Lark C. Studies on the in vivo methylation of DNA in Escherichia coli 15T. J Mol Biol. 1968 Feb 14;31(3):389–399. doi: 10.1016/0022-2836(68)90416-6. [DOI] [PubMed] [Google Scholar]
  20. Lark K. G., Lark C. Regulation of chromosome replication in Escherichia coli: alternate replication of two chromosomes at slow growth rates. J Mol Biol. 1965 Aug;13(1):105–126. doi: 10.1016/s0022-2836(65)80083-3. [DOI] [PubMed] [Google Scholar]
  21. MAALOE O., HANAWALT P. C. Thymine deficiency and the normal DNA replication cycle. I. J Mol Biol. 1961 Apr;3:144–155. doi: 10.1016/s0022-2836(61)80041-7. [DOI] [PubMed] [Google Scholar]
  22. PRITCHARD R. H., LARK K. G. INDUCTION OF REPLICATION BY THYMINE STARVATION AT THE CHROMOSOME ORIGIN IN ESCHERICHIA COLI. J Mol Biol. 1964 Aug;9:288–307. doi: 10.1016/s0022-2836(64)80208-4. [DOI] [PubMed] [Google Scholar]
  23. Pato M. L., Glaser D. A. The origin and direction of replication of the chromosome of Escherichia coli B-r. Proc Natl Acad Sci U S A. 1968 Aug;60(4):1268–1274. doi: 10.1073/pnas.60.4.1268. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Rupp W. D., Howard-Flanders P. Discontinuities in the DNA synthesized in an excision-defective strain of Escherichia coli following ultraviolet irradiation. J Mol Biol. 1968 Jan 28;31(2):291–304. doi: 10.1016/0022-2836(68)90445-2. [DOI] [PubMed] [Google Scholar]
  25. SETLOW R. B., SWENSON P. A., CARRIER W. L. THYMINE DIMERS AND INHIBITION OF DNA SYNTHESIS BY ULTRAVIOLET IRRADIATION OF CELLS. Science. 1963 Dec 13;142(3598):1464–1466. doi: 10.1126/science.142.3598.1464. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES