Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1969 Mar;97(3):1248–1261. doi: 10.1128/jb.97.3.1248-1261.1969

Stimulation of Fermentation and Yeast-like Morphogenesis in Mucor rouxii by Phenethyl Alcohol

H F Terenzi a,1, R Storck a
PMCID: PMC249842  PMID: 5776529

Abstract

The germination of fungal spores into hyphae was inhibited by concentrations of phenethyl alcohol (PEA) from 0.05 to 0.3%. Spores of Mucor formed budding spherical cells instead of filaments. These cells were abundant in cultures of Mucor rouxii at 0.22% PEA, provided that the carbon source was a hexose at 2 to 5%. Morphology was filamentous with xylose, maltose, sucrose, or a mixture of amino acids. Removal of PEA resulted in the conversion of yeast-like cells into hyphae. PEA did not inhibit biosynthesis of cytochromes or oxygen uptake, but it stimulated CO2 and ethyl alcohol production. PEA had no effect on the rate of oxygen uptake, but it inhibited the oxidative-phosphorylation activity of mitochondria. These results suggested that growth inhibition by PEA could result from uncoupling of oxidative phosphorylation and that, in Mucor, yeast-like morphology and fermentation were linked.

Full text

PDF
1248

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BARTNICKI GARCIA S. SYMPOSIUM ON BIOCHEMICAL BASES OF MORPHOGENESIS IN FUNGI. III. MOLD-YEAST DIMORPHISM OF MUCOR. Bacteriol Rev. 1963 Sep;27:293–304. doi: 10.1128/br.27.3.293-304.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BARTNICKI-GARCIA S., NICKERSON W. J. Assimilation of carbon dioxide and morphogenesis Mucor rouxii. Biochim Biophys Acta. 1962 Nov 5;64:548–551. doi: 10.1016/0006-3002(62)90314-1. [DOI] [PubMed] [Google Scholar]
  3. BARTNICKI-GARCIA S., NICKERSON W. J. Induction of yeast-like development in Mucor by carbon dioxide. J Bacteriol. 1962 Oct;84:829–840. doi: 10.1128/jb.84.4.829-840.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. BARTNICKI-GARCIA S., NICKERSON W. J. Nutrition, growth, and morphogenesis of Mucor rouxii. J Bacteriol. 1962 Oct;84:841–858. doi: 10.1128/jb.84.4.841-858.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. BERRAH G., KONETZKA W. A. Selective and reversible inhibition of the synthesis of bacterial deoxyribonucleic acid by phenethyl alcohol. J Bacteriol. 1962 Apr;83:738–744. doi: 10.1128/jb.83.4.738-744.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. BONNICHSEN R., LUNDGREN G. Comparison of the ADH and the Widmark procedures in forensic chemistry for determinating alcohol. Acta Pharmacol Toxicol (Copenh) 1957;13(3):256–266. doi: 10.1111/j.1600-0773.1957.tb00262.x. [DOI] [PubMed] [Google Scholar]
  7. BUHLER D. R. A simple scintillation counting technique for assaying C1402 in a Warburg flask. Anal Biochem. 1962 Nov;4:413–417. doi: 10.1016/0003-2697(62)90143-4. [DOI] [PubMed] [Google Scholar]
  8. Bruchovsky N., Till J. E. Effects of beta-phenethyl alcohol on mouse L cells in suspension culture. I. Reversible inhibition of cell proliferation and effects on the uptake of labeled precursors of nucleic acid and protein. Mol Pharmacol. 1967 Mar;3(2):124–132. [PubMed] [Google Scholar]
  9. Crocken B., Tatum E. L. The effect of sorbose on metabolism and morphology of Neurospora. Biochim Biophys Acta. 1968 Feb 1;156(1):1–8. doi: 10.1016/0304-4165(68)90097-4. [DOI] [PubMed] [Google Scholar]
  10. Haidle C. W., Storck R. Control of dimorphism in Mucor rouxii. J Bacteriol. 1966 Oct;92(4):1236–1244. doi: 10.1128/jb.92.4.1236-1244.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Haidle C. W., Storck R. Inhibition by cycloheximide of protein and RNA synthesis in Mucor rouxii. Biochem Biophys Res Commun. 1966 Jan 24;22(2):175–180. doi: 10.1016/0006-291x(66)90428-1. [DOI] [PubMed] [Google Scholar]
  12. Jayaraman J., Cotman C., Mahler H. R., Sharp C. W. Biochemical correlates of respiratory deficiency. VII. Glucose repression. Arch Biochem Biophys. 1966 Sep 26;116(1):224–251. doi: 10.1016/0003-9861(66)90029-4. [DOI] [PubMed] [Google Scholar]
  13. Kobr M. J., Bianchi D. E., Oulevey N., Turian G. The effect of oxygen tension on growth, conidiation, and alcohol production of Neurospora crassa. Can J Microbiol. 1967 Jul;13(7):805–809. doi: 10.1139/m67-106. [DOI] [PubMed] [Google Scholar]
  14. LEACH F. R., BEST N. H., DAVIS E. M., SANDERS D. C., GIMLIN D. M. EFFECT OF PHENETHYL ALCOHOL ON CELL CULTURE GROWTH. I. CHARACTERIZATION OF THE EFFECT. Exp Cell Res. 1964 Dec;36:524–532. doi: 10.1016/0014-4827(64)90309-x. [DOI] [PubMed] [Google Scholar]
  15. LILLEY B. D., BREWER J. H. The selective antibacterial action of phenylethyl alcohol. J Am Pharm Assoc Am Pharm Assoc. 1953 Jan;42(1):6–8. doi: 10.1002/jps.3030420103. [DOI] [PubMed] [Google Scholar]
  16. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  17. Lester G. Inhibition of Growth, Synthesis, and Permeability in Neurospora crassa by Phenethyl Alcohol. J Bacteriol. 1965 Jul;90(1):29–37. doi: 10.1128/jb.90.1.29-37.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Plagemann P. G. Phenethyl alcohol: reversible inhibition of synthesis of macromolecules and disaggregation of polysomes in rat hepatoma cells. Biochim Biophys Acta. 1968 Jan 29;155(1):202–218. doi: 10.1016/0005-2787(68)90350-x. [DOI] [PubMed] [Google Scholar]
  19. Prevost C., Moses V. Action of phyenethyl alcohol on the synthesis of macromolecules in Escherichia coli. J Bacteriol. 1966 Apr;91(4):1446–1452. doi: 10.1128/jb.91.4.1446-1452.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. ROSENKRANZ H. S., CARR H. S., ROSE H. M. PHENETHYL ALCOHOL. I. EFFECT ON MACROMOLECULAR SYNTHESIS OF ESCHERICHIA COLI. J Bacteriol. 1965 May;89:1354–1369. doi: 10.1128/jb.89.5.1354-1369.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Remsen C. C., Lundgren D. G., Slepecky R. A. Inhibition of the development of the spore septum and membranes in Bacillus cereus by beta-phenethyl alcohol. J Bacteriol. 1966 Jan;91(1):324–331. doi: 10.1128/jb.91.1.324-331.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Schwalb M. N., Miles P. G. Morphogenesis of Schizophyllum commune. II. Effect of microaerobic growth. Mycologia. 1967 Jul-Aug;59(4):610–622. [PubMed] [Google Scholar]
  23. Silver S., Wendt L. Mechanism of action of phenethyl alcohol: breakdown of the cellular permeability barrier. J Bacteriol. 1967 Feb;93(2):560–566. doi: 10.1128/jb.93.2.560-566.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. TREICK R. W., KONETZKA W. A. PHYSIOLOGICAL STATE OF ESCHERICHIA COLI AND THE INHIBITION OF DEOXYRIBONUCLEIC ACID SYNTHESIS BY PHENETHYL ALCOHOL. J Bacteriol. 1964 Dec;88:1580–1584. doi: 10.1128/jb.88.6.1580-1584.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Terenzi H. F., Storck R. Stimulation by phenethyl alcohol of aerobic fermentation in Mucor rouxii. Biochem Biophys Res Commun. 1968 Mar 12;30(5):447–452. doi: 10.1016/0006-291x(68)90071-5. [DOI] [PubMed] [Google Scholar]
  26. Watson K., Smith J. E. Oxidative phosphorylation and respiratory control in mitochondria from Aspergillus niger. Biochem J. 1967 Aug;104(2):332–339. doi: 10.1042/bj1040332. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES