Abstract
Some antitumor agents known to specifically inhibit certain tumor cell enzymes were examined for activity against glycolytic enzymes and growth of the insect trypanosomatid, Crithidia fasciculata. The cytoplasmic enzymes hexokinase, α-glycerophosphate dehydrogenase, malic dehydrogenase, and glucose-6-phosphate dehydrogenase were tested. Agaricic acid (2-hydroxy-1,2,3-nonadecane tricarboxylic acid) was highly inhibitory (50 to 100%) to malic and α-glycerophosphate dehydrogenases at ∼3 × 10−5m; 2-(p-hydroxyphenyl)-2-phenylpropane (2 × 10−4m), and 5,6-dichloro-2-benzoxazolinone (5 × 10−4m) were less effective (50% inhibition) against them. The antiprotozoal agents primaquine (4 × 10−4m) and Melarsoprol (8 × 10−4m) were 30 to 40% inhibitory. Agaricic acid, 2-(p-hydroxyphenyl)-2-phenylpropane, and 5,6-dichloro-2-benzoxazolinone inhibited growth of Crithidia at less than 10−4m. Eight other test compounds from the Cancer Chemotherapy National Service Center (CCNSC) were not toxic to cell growth, although two (4-biphenylcarboxylic acid and 1-[p-chlorobenzyl]-2-ethyl-5-methyl-indole-3-acetic acid) inhibited Crithidia α-glycerophosphate dehydrogenase below 1 mm. All of the compounds used specifically inhibited cancer cell α-glycerophosphate dehydrogenase. The corresponding enzyme in pathogenic African trypanosomes is important in their terminal respiration. C. fasciculata may be useful in preliminary evaluation of chemotherapeutic agents as potential trypanocides.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- BAUCHOP T. Ethanol formation in Strigomonas oncopelti. Biochim Biophys Acta. 1962 Jun 4;59:742–743. doi: 10.1016/0006-3002(62)90666-2. [DOI] [PubMed] [Google Scholar]
- BOXER G. E., DEVLIN T. M. Pathways of intracellular hydrogen transport. Science. 1961 Nov 10;134(3489):1495–1501. doi: 10.1126/science.134.3489.1495. [DOI] [PubMed] [Google Scholar]
- Bacchi C. J., Hutner S. H., Ciaccio E. I., Marcus S. M. O2-polarographic studies on soluble and mitochondrial enzymes of Crithidia fasciculata; glycerophosphage enzymes. J Protozool. 1968 Aug;15(3):576–584. doi: 10.1111/j.1550-7408.1968.tb02175.x. [DOI] [PubMed] [Google Scholar]
- Black W. J. Kinetic studies on the mechanism of cytoplasmic L-alpha-glycerophosphate dehydrogenase of rabbit skeletal muscle. Can J Biochem. 1966 Oct;44(10):1301–1317. doi: 10.1139/o66-150. [DOI] [PubMed] [Google Scholar]
- CANTRELL W. The effect of mapharsen on the glucose metabolism of Trypanosoma equiperdum. J Infect Dis. 1953 Mar-Apr;92(2):191–194. doi: 10.1093/infdis/92.2.191. [DOI] [PubMed] [Google Scholar]
- CANTRELL W. The effect of oxophenarsine on the phosphate metabolism of Trypanosoma equiperdum in the rat. J Infect Dis. 1954 Jul-Aug;95(1):92–97. doi: 10.1093/infdis/95.1.92. [DOI] [PubMed] [Google Scholar]
- CIACCIO E. I., KELLER D. L., BOXER G. E. The production of L-alpha-glycerophosphate during anaerobic glycolysis in normal and malignant tissues. Biochim Biophys Acta. 1960 Jan 1;37:191–193. doi: 10.1016/0006-3002(60)90113-x. [DOI] [PubMed] [Google Scholar]
- Carrano R. A., Malone M. H. Pharmacologic study of norcaperatic and agaricic acids. J Pharm Sci. 1967 Dec;56(12):1611–1614. doi: 10.1002/jps.2600561216. [DOI] [PubMed] [Google Scholar]
- Ciaccio E. I., Boxer G. E., Devlin T. M., Ford R. T. Screening data from selected in vitro enzymatic systems. I. Standard test compounds from the Cancer Chemotherapy National Service Center. Cancer Res. 1967 Oct;27(10 Pt 2):1033–1069. [PubMed] [Google Scholar]
- Ciaccio E. I., Boxer G. E., Devlin T. M., Ford R. T. Screening data from selected in vitro enzymatic systems. II. Compounds specifically selected for the dehydrogenase inhibition screens. Cancer Res. 1967 Oct;27(10 Pt 2):1070–1104. [PubMed] [Google Scholar]
- GRANT P. T., SARGENT J. R. L-alpha-Glycerophosphate dehydrogenase, a component of an oxidase system in Trypanosoma rhodesiense. Biochem J. 1961 Oct;81:206–214. doi: 10.1042/bj0810206. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GRANT P. T., SARGENT J. R. Properties of L-alpha-glycerophosphate oxidase and its role in the respiration of Trypanosoma rhodesiense. Biochem J. 1960 Aug;76:229–237. doi: 10.1042/bj0760229. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HUNTER F. R. Aerobic metabolism of Crithidia fasciculata. Exp Parasitol. 1960 Jun;9:271–280. doi: 10.1016/0014-4894(60)90035-7. [DOI] [PubMed] [Google Scholar]
- Hill G. C., Hutner S. H. Effect of trypanocidal drugs on terminal respiration of Crithidia fasciculata. Exp Parasitol. 1968 Apr;22(2):207–212. doi: 10.1016/0014-4894(68)90093-3. [DOI] [PubMed] [Google Scholar]
- Hill G. C., White D. C. Respiratory pigments of Crithidia fasciculata. J Bacteriol. 1968 Jun;95(6):2151–2157. doi: 10.1128/jb.95.6.2151-2157.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- RYLEY J. F. Studies on the metabolism of the Protozoa. 7. Comparative carbohydrate metabolism of eleven species of trypanosome. Biochem J. 1956 Feb;62(2):215–222. doi: 10.1042/bj0620215. [DOI] [PMC free article] [PubMed] [Google Scholar]
- RYLEY J. F. Studies on the metabolism of the protozoa. 9. Comparative metabolism of blood-stream and culture forms of Trypanosoma rhodesiense. Biochem J. 1962 Oct;85:211–223. doi: 10.1042/bj0850211. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WALLS L. P. THE CHEMOTHERAPY OF TRYPANOSOMIASIS. Prog Med Chem. 1963;19:52–88. doi: 10.1016/s0079-6468(08)70116-4. [DOI] [PubMed] [Google Scholar]
- WILLIAMSON J. Chemotherapy and chemoprophylaxis of African trypanosomiasis. Exp Parasitol. 1962 Oct;12:323–367. doi: 10.1016/0014-4894(62)90046-2. [DOI] [PubMed] [Google Scholar]