Abstract
A simple and rapid method is described for separation of T-even bacteriophage deoxyribonucleic acid (DNA) from host (Escherichia coli) DNA by hydroxyapatite column chromatography with a shallow gradient of phosphate buffer at neutral pH. By this method, bacteriophage T2, T4, and T6 DNA (but not T5, T7, or λ DNA) could be separated from host E. coli DNA. It was found that glucosylation of the T-even phage DNA is an important factor in separation.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bernardi G. Chromatography of nucleic acids on hydroxyapatite. Nature. 1965 May 22;206(4986):779–783. doi: 10.1038/206779a0. [DOI] [PubMed] [Google Scholar]
- Georgopoulos C. P. Location of glucosyl transferase genes on the genetic map of phage T4. Virology. 1968 Feb;34(2):364–366. doi: 10.1016/0042-6822(68)90250-x. [DOI] [PubMed] [Google Scholar]
- HJERTEN S., LEVIN O., TISELIUS A. Protein chromatography on calcium phosphate columns. Arch Biochem Biophys. 1956 Nov;65(1):132–155. doi: 10.1016/0003-9861(56)90183-7. [DOI] [PubMed] [Google Scholar]
- MIYAZAWA Y., THOMAS C. A., Jr NUCLEOTIDE COMPOSITION OF SHORT SEGMENTS OF DNA MOLECULES. J Mol Biol. 1965 Feb;11:223–237. doi: 10.1016/s0022-2836(65)80053-5. [DOI] [PubMed] [Google Scholar]
- Oishi M. Studies of DNA replication in vivo. 3. Accumulation of a single-stranded isolation product of DNA replication by conditional mutant strains of T4. Proc Natl Acad Sci U S A. 1968 Jul;60(3):1000–1006. doi: 10.1073/pnas.60.3.1000. [DOI] [PMC free article] [PubMed] [Google Scholar]
