Abstract
Studies of the relationship between yield coefficient and growth rate, as affected by temperature of growth, in Escherichia coli have shown that, over a wide range of temperature, yield is relatively constant until the specific growth rate falls below about 0.2 hr−1, at which point the yield begins to fall off precipitously. No intermediates of glucose metabolism in a form utilizable at higher temperatures could be found in the medium, and no toxic product was produced which limited growth. At 10 C, 37% of the carbon from glucose-UL-14C was assimilated into cellular material, whereas, at 30 C, 53% was assimilated. Cells grown at 10 C contained more carbohydrate than did cells grown at 37 C, and the glycogen-to-protein ratio of cells grown at 10 C was approximately three times higher than that of cells grown at 37 C. Adenosine triphosphatase activities of cells grown at 10 and 35 C were similar. Growth rates on glucose, glycerol, and succinate were quite similar at 10 C, but at 35 C growth was most rapid on glucose and slowest on succinate. The data suggest that the decrease in yield with decrease in temperature is a result of uncoupling of energy production from energy utilization.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- BAUCHOP T., ELSDEN S. R. The growth of micro-organisms in relation to their energy supply. J Gen Microbiol. 1960 Dec;23:457–469. doi: 10.1099/00221287-23-3-457. [DOI] [PubMed] [Google Scholar]
- FALES F. W. The assimilation and degradation of carbohydrates by yeast cells. J Biol Chem. 1951 Nov;193(1):113–124. [PubMed] [Google Scholar]
- HERBERT D., ELSWORTH R., TELLING R. C. The continuous culture of bacteria; a theoretical and experimental study. J Gen Microbiol. 1956 Jul;14(3):601–622. doi: 10.1099/00221287-14-3-601. [DOI] [PubMed] [Google Scholar]
- Huber R. E., Segel I. H., Criddle R. S. Growth of Escherichia coli on selenate. Biochim Biophys Acta. 1967 Aug 29;141(3):573–586. doi: 10.1016/0304-4165(67)90186-9. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- MARR A. G., INGRAHAM J. L., SQUIRES C. L. EFFECT OF THE TEMPERATURE OF GROWTH OF ESCHERICHIA COLI ON THE FORMATION OF BETA-GALACTOSIDASE. J Bacteriol. 1964 Feb;87:356–362. doi: 10.1128/jb.87.2.356-362.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MARSH C., MILITZER W. Thermal enzymes. VII. Further data on an adenosinetriphosphatase. Arch Biochem Biophys. 1956 Feb;60(2):433–438. doi: 10.1016/0003-9861(56)90448-9. [DOI] [PubMed] [Google Scholar]
- MONOD J., COHEN-BAZIRE G., COHN M. Sur la biosynthèse de la beta-galactosidase (lactase) chez Escherichia coli; la spécificité de l'induction. Biochim Biophys Acta. 1951 Nov;7(4):585–599. doi: 10.1016/0006-3002(51)90072-8. [DOI] [PubMed] [Google Scholar]
- MORITA R. Y., ALBRIGHT L. J. CELL YIELDS OF VIBRIO MARINUS, AN OBLIGATE PSYCHROPHILE, AT LOW TEMPERATURE. Can J Microbiol. 1965 Apr;11:221–227. doi: 10.1139/m65-028. [DOI] [PubMed] [Google Scholar]
- Mayberry W. R., Prochazka G. J., Payne W. J. Growth yields of bacteria on selected organic compounds. Appl Microbiol. 1967 Nov;15(6):1332–1338. doi: 10.1128/am.15.6.1332-1338.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- NG H., INGRAHAM J. L., MARR A. G. Damage and derepression in Escherichia coli resulting from growth at low temperatures. J Bacteriol. 1962 Aug;84:331–339. doi: 10.1128/jb.84.2.331-339.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
- O'Donovan G. A., Ingraham J. L. Cold-sensitive mutants of Escherichia coli resulting from increased feedback inhibition. Proc Natl Acad Sci U S A. 1965 Aug;54(2):451–457. doi: 10.1073/pnas.54.2.451. [DOI] [PMC free article] [PubMed] [Google Scholar]
- O'donovan G. A., Kearney C. L., Ingraham J. L. Mutants of Escherichia coli with High Minimal Temperatures of Growth. J Bacteriol. 1965 Sep;90(3):611–616. doi: 10.1128/jb.90.3.611-616.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SENEZ J. C. Some considerations on the energetics of bacterial growth. Bacteriol Rev. 1962 Jun;26:95–107. [PMC free article] [PubMed] [Google Scholar]
- SIGAL N., CATTANEO J., SEGEL I. H. GLYCOGEN ACCUMULATION BY WILD-TYPE AND URIDINE DIPHOSPHATE GLUCOSE PYROPHOSPHORYLASE-NEGATIVE STRAINS OF ESCHERICHIA COLI. Arch Biochem Biophys. 1964 Dec;108:440–451. doi: 10.1016/0003-9861(64)90425-4. [DOI] [PubMed] [Google Scholar]
- SINCLAIR N. A., STOKES J. L. Role of oxygen in the high cell yields of psychrophiles and mesophiles at low temperatures. J Bacteriol. 1963 Jan;85:164–167. doi: 10.1128/jb.85.1.164-167.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stokes J. L., Larkin J. M. Comparative effect of temperature on the oxidative metabolism of whole and disrupted cells of a psychrophilic and a mesophilic species of Bacillus. J Bacteriol. 1968 Jan;95(1):95–98. doi: 10.1128/jb.95.1.95-98.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]