Abstract
The metabolism of propane and propionate by a soil isolate (Brevibacterium sp. strain JOB5) was investigated. The presence of isocitrate lyase in cells grown on isopropanol, acetate, or propane and the absence of this inducible enzyme in n-propanol- and propionate-grown cells suggested that propane is not metabolized via C-terminal oxidation. Methylmalonyl coenzyme A mutase and malate synthase are constitutive in this organism. The incorporation of 14CO2 into pyruvate accumulated during propionate utilization suggests that propionate is metabolized via the methyl-malonyl-succinate pathway. These results were further substantiated by radiorespirometric studies with propionate-1-14C, -2-14C, and -3-14C as substrate. Propane -2-14C was shown, by unlabeled competitor experiments, to be oxidized to acetone; acetone and isopropanol are oxidized in this organism to acetol. Cleavage of acetol to acetate and CO2 would yield the inducer for the isocitrate lyase present in propane-grown cells.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Dunlap K. R., Perry J. J. Effect of substrate on the fatty acid composition of hydrocabon-utilizing microorganisms. J Bacteriol. 1967 Dec;94(6):1919–1923. doi: 10.1128/jb.94.6.1919-1923.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- EL HAWARY M. F. S., THOMPSON R. H. S. Separation and estimation of blood keto acids by paper chromatography. Biochem J. 1953 Feb;53(3):340–347. doi: 10.1042/bj0530340. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FOSTER J. W. Hydrocarbons as substrates for microorganisms. Antonie Van Leeuwenhoek. 1962;28:241–274. doi: 10.1007/BF02538739. [DOI] [PubMed] [Google Scholar]
- Furmanski P., Wegener W. S., Reeves H. C., Ajl S. J. Function of the glyoxylate-condensing enzymes. I. Growth of Escherichia coli on n-valeric acid. J Bacteriol. 1967 Oct;94(4):1075–1081. doi: 10.1128/jb.94.4.1075-1081.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Iizuka H., Iida M., Unami Y., Hoshino Y. n-decane dehydrogenation by a cell-free extract of Candida rugosa. Z Allg Mikrobiol. 1968;8(2):145–149. [PubMed] [Google Scholar]
- KESTER A. S., FOSTER J. W. DITERMINAL OXIDATION OF LONG-CHAIN ALKANES BY BACTERIA. J Bacteriol. 1963 Apr;85:859–869. doi: 10.1128/jb.85.4.859-869.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LEADBETTER E. R., FOSTER J. W. Studies on some methane-utilizing bacteria. Arch Mikrobiol. 1958;30(1):91–118. doi: 10.1007/BF00509229. [DOI] [PubMed] [Google Scholar]
- LEVINE S., KRAMPITZ L. O. The oxidation of acetone by a soil diphtheroid. J Bacteriol. 1952 Nov;64(5):645–650. doi: 10.1128/jb.64.5.645-650.1952. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- LUKINS H. B., FOSTER J. W. METHYL KETONE METABOLISM IN HYDROCARBON-UTILIZING MYCOBACTERIA. J Bacteriol. 1963 May;85:1074–1087. doi: 10.1128/jb.85.5.1074-1087.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
- OOYAMA J., FOSTER J. W. BACTERIAL OXIDATION OF CYCLOPARAFFINIC HYDROCARBONS. Antonie Van Leeuwenhoek. 1965;31:45–65. doi: 10.1007/BF02045875. [DOI] [PubMed] [Google Scholar]
- Perry J. J., Scheld H. W. Oxidation of hydrocarbons by microorganisms isolated from soil. Can J Microbiol. 1968 Apr;14(4):403–407. doi: 10.1139/m68-064. [DOI] [PubMed] [Google Scholar]
- Perry J. J. Substrate specificity in hydrocarbon utilizing microorganisms. Antonie Van Leeuwenhoek. 1968;34(1):27–36. doi: 10.1007/BF02046411. [DOI] [PubMed] [Google Scholar]
- ROBINSON D. S. OXIDATION OF SELECTED ALKANES AND RELATED COMPOUNDS BY A PSEUDOMONAS STRAIN. Antonie Van Leeuwenhoek. 1964;30:303–316. doi: 10.1007/BF02046736. [DOI] [PubMed] [Google Scholar]
- RUDNEY H. Propanediol phosphate as a possible intermediate in the metabolism of acetone. J Biol Chem. 1954 Sep;210(1):361–371. [PubMed] [Google Scholar]
- SENEZ J. C., KONOVALTSCHIKOFF-MAZOYER M. Formation d'acides gras dans les cultures de Pseudomonas aeruginosa sur n-heptane. C R Hebd Seances Acad Sci. 1956 Jun 11;242(24):2873–2875. [PubMed] [Google Scholar]
- SMITH R. A., GUNSALUS I. C. Isocitritase; enzyme properties and reaction equilibrium. J Biol Chem. 1957 Nov;229(1):305–319. [PubMed] [Google Scholar]
- STEWART J. E., KALLIO R. E., STEVENSON D. P., JONES A. C., SCHISSLER D. O. Bacterial hydrocarbon oxidation. I. Oxidation of n-hexadecane by a gram-negative coccus. J Bacteriol. 1959 Sep;78:441–448. doi: 10.1128/jb.78.3.441-448.1959. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith J., Kornberg H. L. The utilization of propionate by Micrococcus denitrificans. J Gen Microbiol. 1967 May;47(2):175–180. doi: 10.1099/00221287-47-2-175. [DOI] [PubMed] [Google Scholar]
- VANDERWINKEL E., LIARD P., RAMOS F., WIAME J. M. Genetic control of the regulation of isocitritase and malate synthase in Escherichia coli K 12. Biochem Biophys Res Commun. 1963 Jul 18;12:157–162. doi: 10.1016/0006-291x(63)90254-7. [DOI] [PubMed] [Google Scholar]
- WANG C. H., STERN I., GILMOUR C. M., KLUNGSOYR S., REED D. J., BIALY J. J., CHRISTENSEN B. E., CHELDELIN V. H. Comparative study of glucose catabolism by the radiorespirometric method. J Bacteriol. 1958 Aug;76(2):207–216. doi: 10.1128/jb.76.2.207-216.1958. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wegener W. S., Reeves H. C., Rabin R., Ajl S. J. Alternate pathways of metabolism of short-chain fatty acids. Bacteriol Rev. 1968 Mar;32(1):1–26. doi: 10.1128/br.32.1.1-26.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van Eyk J., Bartels T. J. Paraffin oxidation in Pseudomonas aeruginosa. I. Induction of paraffin oxidation. J Bacteriol. 1968 Sep;96(3):706–712. doi: 10.1128/jb.96.3.706-712.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]