Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1969 Jul;99(1):238–241. doi: 10.1128/jb.99.1.238-241.1969

Escherichia coli K-12 Mutants Resistant to Nalidixic Acid: Genetic Mapping and Dominance Studies1

Michael W Hane a,2, Thomas H Wood a
PMCID: PMC249993  PMID: 4895844

Abstract

Escherichia coli K-12 strains tested so far (approximately 20) can be separated into three groups on the basis of their abilities to form colonies on nutrient agar supplemented with nalidixic acid (NAL): (i) Nals or wild type (no growth at 1 to 2 μg/ml); (ii) NalAr (growth at 40 μg/ml or higher); and (iii) NalBr (growth at 4 μg/ml, but no growth at 10 μg/ml). The NalAr group has a spectrum of sensitivity ranging from 60 to over 100 μg/ml. All Hfr strains of the NalAr and NalBr groups transfer NAL resistance to recipient cells at genetic loci which are at 42.5 ± 0.5 and 51 ± 1 min, respectively, on the Taylor-Trotter map. Some members of the NalAr group also have the genetic locus for NalBr. The nalAs allele is completely dominant to nalAr in a partial diploid configuration. In haploids, nalAr-nalBr is phenotypically NalAr; nalAr-nalBs is NalAr; and nalAs-nalBr is NalBr. The map location of nalA and the easy differentiation between NalAr and NalAs allow this marker to be used as a counterselector in bacterial conjugation experiments.

Full text

PDF
238

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barbour S. D. Effect of nalidixic acid on conjugational transfer and expression of episomal lac genes in Escherichia coli K12. J Mol Biol. 1967 Sep 14;28(2):373–376. doi: 10.1016/s0022-2836(67)80016-0. [DOI] [PubMed] [Google Scholar]
  2. Bastarrachea F., Willetts N. S. The elimination by acridine orange of F30 from recombination-deficient strains of Escherichia coli K12. Genetics. 1968 Jun;59(2):153–166. doi: 10.1093/genetics/59.2.153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bresler S. E., Lanzov V. A., Lukjaniec-Blinkova A. A. On the mechanism of conjugation in Escherichia coli K 12. Mol Gen Genet. 1968;102(4):269–274. doi: 10.1007/BF00433718. [DOI] [PubMed] [Google Scholar]
  4. Cuzin F., Buttin G., Jacob F. On the mechanism of genetic transfer during conjugation of Escherichia coli. J Cell Physiol. 1967 Oct;70(2 Suppl):77–88. doi: 10.1002/jcp.1040700407. [DOI] [PubMed] [Google Scholar]
  5. GOSS W. A., DEITZ W. H., COOK T. M. MECHANISM OF ACTION OF NALIDIXIC ACID ON ESCHERICHIA COLI.II. INHIBITION OF DEOXYRIBONUCLEIC ACID SYNTHESIS. J Bacteriol. 1965 Apr;89:1068–1074. doi: 10.1128/jb.89.4.1068-1074.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hollom S., Pritchard R. H. Effect of inhibition of DNA synthesis on mating in Escherichia coli K12. Genet Res. 1965 Nov;6(3):479–483. doi: 10.1017/s0016672300004365. [DOI] [PubMed] [Google Scholar]
  7. LOW B., WOOD T. H. A QUICK AND EFFICIENT METHOD FOR INTERRUPTION OF BACTERIAL CONJUGATION. Genet Res. 1965 Jul;6:300–303. doi: 10.1017/s001667230000416x. [DOI] [PubMed] [Google Scholar]
  8. Low B. Formation of merodiploids in matings with a class of Rec- recipient strains of Escherichia coli K12. Proc Natl Acad Sci U S A. 1968 May;60(1):160–167. doi: 10.1073/pnas.60.1.160. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. McFall E. Dominance studies with stable merodiploids in the D-serine deaminase system of Escherichia coli K-12. J Bacteriol. 1967 Dec;94(6):1982–1988. doi: 10.1128/jb.94.6.1982-1988.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Taylor A. L., Trotter C. D. Revised linkage map of Escherichia coli. Bacteriol Rev. 1967 Dec;31(4):332–353. doi: 10.1128/br.31.4.332-353.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES