Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1969 Jul;99(1):255–262. doi: 10.1128/jb.99.1.255-262.1969

Base Sequence Homology and Renaturation Studies of the Deoxyribonucleic Acid of Extremely Halophilic Bacteria

Richard L Moore a,1, Brian J McCarthy a
PMCID: PMC249996  PMID: 5802609

Abstract

The genetic relatedness among various strains of halophilic bacteria has been assessed by deoxyribonucleic acid-deoxyribonucleic acid (DNA-DNA) duplex formation and ribosomal ribonucleic acid (RNA) hybridization. All of the strains of extremely halophilic rods are closely related, and the extent of divergence of base sequence is similar for the major and minor DNA components. Parallel experiments with ribosomal RNA revealed a relationship between the extremely halophilic rods and cocci and a more distant relationship to moderate halophiles and to a photosynthetic extreme halophile. Renaturation studies of halophile DNA exclude the possibility that the satellite DNA represents multiple copies of a small episomal element. The kinetics of DNA renaturation show that the genome size of the extreme and moderate halophiles is similar to that of Escherichia coli.

Full text

PDF
255

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Britten R. J., Kohne D. E. Repeated sequences in DNA. Hundreds of thousands of copies of DNA sequences have been incorporated into the genomes of higher organisms. Science. 1968 Aug 9;161(3841):529–540. doi: 10.1126/science.161.3841.529. [DOI] [PubMed] [Google Scholar]
  2. Cohen S. N., Maitra U., Hurwitz J. Role of DNA in RNA synthesis. XI. Selective transcription of gamma DNA segments in vitro by RNA polymerase of Escherichia coli. J Mol Biol. 1967 May 28;26(1):19–38. doi: 10.1016/0022-2836(67)90258-6. [DOI] [PubMed] [Google Scholar]
  3. DOI R. H., IGARASHI R. T. CONSERVATION OF RIBOSOMAL AND MESSENGER RIBONUCLEIC ACID CISTRONS IN BACILLUS SPECIES. J Bacteriol. 1965 Aug;90:384–390. doi: 10.1128/jb.90.2.384-390.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Denhardt D. T. A membrane-filter technique for the detection of complementary DNA. Biochem Biophys Res Commun. 1966 Jun 13;23(5):641–646. doi: 10.1016/0006-291x(66)90447-5. [DOI] [PubMed] [Google Scholar]
  5. Dubnau D., Smith I., Marmur J. Gene conservation in Bacillus species. II. The location of genes concerned with the synthesis of ribosomal components and soluble RNA. Proc Natl Acad Sci U S A. 1965 Sep;54(3):724–730. doi: 10.1073/pnas.54.3.724. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Edelman M., Swinton D., Schiff J. A., Epstein H. T., Zeldin B. Deoxyribonucleic Acid of the blue-green algae (cyanophyta). Bacteriol Rev. 1967 Dec;31(4):315–331. doi: 10.1128/br.31.4.315-331.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. FALKOW S., WOHLHIETER J. A., CITARELLA R. V., BARON L. S. TRANSFER OF EPISOMIC ELEMENTS TO PROTEUS. II. NATURE OF LAC+ PROTEUS STRAINS ISOLATED FROM CLINICAL SPECIMENS. J Bacteriol. 1964 Dec;88:1598–1601. doi: 10.1128/jb.88.6.1598-1601.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Falkow S., Cowie D. B. Intramolecular heterogeneity of the deoxyribonucleic acid of temperate bacteriophages. J Bacteriol. 1968 Sep;96(3):777–784. doi: 10.1128/jb.96.3.777-784.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. GRAY E. D., HAYWOOD A. M., CHARGAFF E. RAPIDLY LABELED RIBONUCLEIC ACIDS OF RHODOPSEUDOMONAS SPHEROIDES UNDER VARYING CONDITIONS OF CATALASE SYNTHESIS. Biochim Biophys Acta. 1964 Jul 22;87:397–415. doi: 10.1016/0926-6550(64)90113-6. [DOI] [PubMed] [Google Scholar]
  10. Gillespie D., Spiegelman S. A quantitative assay for DNA-RNA hybrids with DNA immobilized on a membrane. J Mol Biol. 1965 Jul;12(3):829–842. doi: 10.1016/s0022-2836(65)80331-x. [DOI] [PubMed] [Google Scholar]
  11. HIGUCHI M., GOTO K., FUJIMOTO M., NAMIKI O., KIKUCHI G. EFFECT OF INHIBITORS OF NUCLEIC ACID AND PROTEIN SYNTHESES ON THE INDUCED SYNTHESES OF BACTERIOCHLOROPHYLL AND DELTA-AMINOLEVULINIC ACID SYNTHETASE BY RHODOPSEUDOMONAS SPHEROIDES. Biochim Biophys Acta. 1965 Jan 11;95:94–110. doi: 10.1016/0005-2787(65)90215-7. [DOI] [PubMed] [Google Scholar]
  12. Knittel M. D., Black C. H., Sandine W. E., Fraser D. K. Use of normal probability paper in determining thermal melting values of deoxyribonucleic acid. Can J Microbiol. 1968 Mar;14(3):239–245. doi: 10.1139/m68-040. [DOI] [PubMed] [Google Scholar]
  13. MARMUR J., FALKOW S., MANDEL M. NEW APPROACHES TO BACTERIAL TAXONOMY. Annu Rev Microbiol. 1963;17:329–372. doi: 10.1146/annurev.mi.17.100163.001553. [DOI] [PubMed] [Google Scholar]
  14. MCCARTHY B. J., BOLTON E. T. An approach to the measurement of genetic relatedness among organisms. Proc Natl Acad Sci U S A. 1963 Jul;50:156–164. doi: 10.1073/pnas.50.1.156. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. McCarthy B. J. Arrangement of base sequences in deoxyribonucleic Acid. Bacteriol Rev. 1967 Dec;31(4):215–229. doi: 10.1128/br.31.4.215-229.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. McCarthy B. J., McConaughy B. L. Related base sequences in the DNA of simple and complex organisms. I. DNA-DNA duplex formation and the incidence of partially related base sequences in DNA. Biochem Genet. 1968 Jun;2(1):37–53. doi: 10.1007/BF01458450. [DOI] [PubMed] [Google Scholar]
  17. Moore R. L., McCarthy B. J. Characterization of the deoxyribonucleic acid of various strains of halophilic bacteria. J Bacteriol. 1969 Jul;99(1):248–254. doi: 10.1128/jb.99.1.248-254.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Moore R. L., McCarthy B. J. Comparative study of ribosomal ribonucleic acid cistrons in enterobacteria and myxobacteria. J Bacteriol. 1967 Oct;94(4):1066–1074. doi: 10.1128/jb.94.4.1066-1074.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. SUEOKA N., CHENG T. Y. Fractionation of nucleic acids with the methylated albumin column. J Mol Biol. 1962 Mar;4:161–172. doi: 10.1016/s0022-2836(62)80048-5. [DOI] [PubMed] [Google Scholar]
  20. Skalka A., Burgi E., Hershey A. D. Segmental distribution of nucleotides in the DNA of bacteriophage lambda. J Mol Biol. 1968 May 28;34(1):1–16. doi: 10.1016/0022-2836(68)90230-1. [DOI] [PubMed] [Google Scholar]
  21. Skalka A. Regional and temporal control of genetic transcription in phage lambda. Proc Natl Acad Sci U S A. 1966 May;55(5):1190–1195. doi: 10.1073/pnas.55.5.1190. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Suyama Y., Gibson J. Satellite DNA in photosynthetic bacteria. Biochem Biophys Res Commun. 1966 Aug 23;24(4):549–553. doi: 10.1016/0006-291x(66)90355-x. [DOI] [PubMed] [Google Scholar]
  23. WATANABE T. Infective heredity of multiple drug resistance in bacteria. Bacteriol Rev. 1963 Mar;27:87–115. doi: 10.1128/br.27.1.87-115.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Wetmur J. G., Davidson N. Kinetics of renaturation of DNA. J Mol Biol. 1968 Feb 14;31(3):349–370. doi: 10.1016/0022-2836(68)90414-2. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES